Properties

Label 15.15.1536312718...0000.1
Degree $15$
Signature $[15, 0]$
Discriminant $2^{18}\cdot 5^{15}\cdot 79^{7}$
Root discriminant $88.26$
Ramified primes $2, 5, 79$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T27

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2176, -16000, -12800, 47920, 26400, -55334, -14660, 28900, 2960, -7300, -174, 890, 0, -50, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 50*x^13 + 890*x^11 - 174*x^10 - 7300*x^9 + 2960*x^8 + 28900*x^7 - 14660*x^6 - 55334*x^5 + 26400*x^4 + 47920*x^3 - 12800*x^2 - 16000*x - 2176)
 
gp: K = bnfinit(x^15 - 50*x^13 + 890*x^11 - 174*x^10 - 7300*x^9 + 2960*x^8 + 28900*x^7 - 14660*x^6 - 55334*x^5 + 26400*x^4 + 47920*x^3 - 12800*x^2 - 16000*x - 2176, 1)
 

Normalized defining polynomial

\( x^{15} - 50 x^{13} + 890 x^{11} - 174 x^{10} - 7300 x^{9} + 2960 x^{8} + 28900 x^{7} - 14660 x^{6} - 55334 x^{5} + 26400 x^{4} + 47920 x^{3} - 12800 x^{2} - 16000 x - 2176 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[15, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(153631271889272000000000000000=2^{18}\cdot 5^{15}\cdot 79^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $88.26$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 79$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{13} - \frac{1}{8} a^{11} - \frac{3}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{3}{8} a^{3}$, $\frac{1}{6452060026716273824} a^{14} + \frac{11395949615632681}{1613015006679068456} a^{13} + \frac{188372045407686873}{3226030013358136912} a^{12} + \frac{35371791354439971}{806507503339534228} a^{11} - \frac{558981077281855015}{3226030013358136912} a^{10} + \frac{790456179509279037}{3226030013358136912} a^{9} - \frac{604007393569475573}{1613015006679068456} a^{8} + \frac{307806448764961829}{806507503339534228} a^{7} + \frac{37282239015656957}{1613015006679068456} a^{6} - \frac{166245945399369397}{1613015006679068456} a^{5} + \frac{1200390849912490941}{3226030013358136912} a^{4} - \frac{393549883684428053}{806507503339534228} a^{3} + \frac{223081336848820739}{806507503339534228} a^{2} - \frac{36187912722994817}{201626875834883557} a - \frac{96229295457424858}{201626875834883557}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 18287336542.5 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T27:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 600
The 16 conjugacy class representatives for [5^2:4]S(3)
Character table for [5^2:4]S(3)

Intermediate fields

3.3.316.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 15 sibling: data not computed
Degree 25 sibling: data not computed
Degree 30 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ R ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{5}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.5.4.1$x^{5} - 2$$5$$1$$4$$F_5$$[\ ]_{5}^{4}$
2.10.14.1$x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$$10$$1$$14$$F_{5}\times C_2$$[2]_{5}^{4}$
5Data not computed
79Data not computed