Normalized defining polynomial
\( x^{15} - 1656 x^{13} - 13248 x^{12} + 853252 x^{11} + 14049472 x^{10} - 64056600 x^{9} - 3309446592 x^{8} - 34903903136 x^{7} - 189549759616 x^{6} - 611135258240 x^{5} - 1232034693120 x^{4} - 1570831270400 x^{3} - 1232812492800 x^{2} - 544459776000 x - 103706624000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1515690136126498500450210146631049938378469084270592000000=2^{18}\cdot 5^{6}\cdot 7^{4}\cdot 257^{5}\cdot 3617^{4}\cdot 9043^{2}\cdot 99103^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $6486.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 257, 3617, 9043, 99103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{20} a^{5} - \frac{1}{10} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{40} a^{6} - \frac{1}{20} a^{4} + \frac{1}{10} a^{3}$, $\frac{1}{80} a^{7} + \frac{1}{20} a^{4} - \frac{1}{20} a^{3} + \frac{1}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{800} a^{8} - \frac{1}{200} a^{6} + \frac{1}{100} a^{5} + \frac{21}{200} a^{4} + \frac{9}{50} a^{3} + \frac{7}{100} a^{2} - \frac{1}{5}$, $\frac{1}{3200} a^{9} + \frac{1}{200} a^{7} - \frac{1}{100} a^{6} - \frac{19}{800} a^{5} - \frac{3}{100} a^{4} + \frac{17}{400} a^{3} + \frac{1}{10} a^{2} - \frac{1}{20} a$, $\frac{1}{32000} a^{10} - \frac{1}{16000} a^{9} + \frac{1}{4000} a^{8} - \frac{9}{2000} a^{7} + \frac{17}{1600} a^{6} + \frac{59}{4000} a^{5} - \frac{163}{4000} a^{4} - \frac{129}{2000} a^{3} - \frac{99}{1000} a^{2} - \frac{19}{100} a + \frac{6}{25}$, $\frac{1}{128000} a^{11} + \frac{1}{32000} a^{9} + \frac{1}{4000} a^{8} + \frac{13}{32000} a^{7} - \frac{17}{2000} a^{6} - \frac{57}{3200} a^{5} + \frac{187}{2000} a^{4} - \frac{1}{500} a^{3} + \frac{123}{1000} a^{2} + \frac{43}{200} a + \frac{21}{50}$, $\frac{1}{1280000} a^{12} + \frac{1}{320000} a^{10} - \frac{1}{10000} a^{9} + \frac{13}{320000} a^{8} - \frac{107}{20000} a^{7} + \frac{231}{32000} a^{6} - \frac{23}{20000} a^{5} + \frac{459}{5000} a^{4} - \frac{347}{10000} a^{3} + \frac{363}{2000} a^{2} - \frac{219}{500} a + \frac{2}{5}$, $\frac{1}{5120000000} a^{13} - \frac{31}{128000000} a^{12} + \frac{1263}{640000000} a^{11} - \frac{161}{40000000} a^{10} - \frac{110047}{1280000000} a^{9} + \frac{57291}{160000000} a^{8} - \frac{670639}{128000000} a^{7} - \frac{482299}{40000000} a^{6} - \frac{1399233}{160000000} a^{5} + \frac{1820893}{40000000} a^{4} + \frac{625731}{8000000} a^{3} + \frac{8541}{1000000} a^{2} - \frac{182981}{400000} a + \frac{39797}{100000}$, $\frac{1}{1966080000000} a^{14} - \frac{11}{491520000000} a^{13} - \frac{49117}{245760000000} a^{12} - \frac{63007}{61440000000} a^{11} - \frac{3191839}{491520000000} a^{10} - \frac{4783157}{40960000000} a^{9} - \frac{18991017}{81920000000} a^{8} + \frac{19421833}{20480000000} a^{7} - \frac{460347649}{61440000000} a^{6} - \frac{36011629}{2560000000} a^{5} + \frac{1335576683}{15360000000} a^{4} + \frac{57310651}{768000000} a^{3} + \frac{65313167}{768000000} a^{2} - \frac{497761}{19200000} a - \frac{1006697}{9600000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1957834578960000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5184000 |
| The 79 conjugacy class representatives for [1/2.S(5)^3]S(3) are not computed |
| Character table for [1/2.S(5)^3]S(3) is not computed |
Intermediate fields
| 3.3.257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | $15$ | $15$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | $15$ | $15$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.2 | $x^{6} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.5.4.1 | $x^{5} - 7$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 7.8.0.1 | $x^{8} - x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 257 | Data not computed | ||||||
| 3617 | Data not computed | ||||||
| 9043 | Data not computed | ||||||
| 99103 | Data not computed | ||||||