Normalized defining polynomial
\( x^{15} - 2 x^{14} - 73 x^{13} + 52 x^{12} + 2098 x^{11} + 858 x^{10} - 28112 x^{9} - 36813 x^{8} + 161814 x^{7} + 350706 x^{6} - 211189 x^{5} - 1031110 x^{4} - 709558 x^{3} + 104955 x^{2} + 207733 x + 42527 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15091397646253318362996493129=11^{12}\cdot 37^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(407=11\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{407}(1,·)$, $\chi_{407}(322,·)$, $\chi_{407}(100,·)$, $\chi_{407}(38,·)$, $\chi_{407}(232,·)$, $\chi_{407}(137,·)$, $\chi_{407}(75,·)$, $\chi_{407}(269,·)$, $\chi_{407}(334,·)$, $\chi_{407}(47,·)$, $\chi_{407}(306,·)$, $\chi_{407}(174,·)$, $\chi_{407}(26,·)$, $\chi_{407}(158,·)$, $\chi_{407}(223,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{23} a^{12} - \frac{8}{23} a^{11} + \frac{6}{23} a^{10} + \frac{3}{23} a^{9} - \frac{5}{23} a^{8} - \frac{1}{23} a^{7} - \frac{2}{23} a^{6} - \frac{11}{23} a^{5} + \frac{8}{23} a^{4} - \frac{6}{23} a^{3} - \frac{4}{23} a^{2} - \frac{4}{23} a$, $\frac{1}{23} a^{13} + \frac{11}{23} a^{11} + \frac{5}{23} a^{10} - \frac{4}{23} a^{9} + \frac{5}{23} a^{8} - \frac{10}{23} a^{7} - \frac{4}{23} a^{6} - \frac{11}{23} a^{5} - \frac{11}{23} a^{4} - \frac{6}{23} a^{3} + \frac{10}{23} a^{2} - \frac{9}{23} a$, $\frac{1}{5282472214221688255067449909} a^{14} + \frac{1009916484153763389139779}{229672704966160358915976083} a^{13} - \frac{79686408454973465217919403}{5282472214221688255067449909} a^{12} - \frac{675397789397226983450044111}{5282472214221688255067449909} a^{11} + \frac{2179078430399751077795290285}{5282472214221688255067449909} a^{10} - \frac{1895111839821147915384968376}{5282472214221688255067449909} a^{9} - \frac{505918052266083900910179011}{5282472214221688255067449909} a^{8} + \frac{1721571278031961328278377523}{5282472214221688255067449909} a^{7} - \frac{1084832005421155370582828563}{5282472214221688255067449909} a^{6} - \frac{61317934079429008099966026}{229672704966160358915976083} a^{5} + \frac{2110200883577049695138638655}{5282472214221688255067449909} a^{4} + \frac{2477929614416485292816374619}{5282472214221688255067449909} a^{3} + \frac{1988854039032715252104236826}{5282472214221688255067449909} a^{2} + \frac{285957385525283301484169649}{5282472214221688255067449909} a + \frac{1688816471027981976795133}{5341225696887450207348281}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2900978466.527207 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.1369.1, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | $15$ | $15$ | R | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{15}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | R | $15$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{15}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $37$ | 37.15.10.1 | $x^{15} + 1975467 x^{6} - 1874161 x^{3} + 152348673529$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |