Normalized defining polynomial
\( x^{15} - 157 x^{13} - 322 x^{12} + 9363 x^{11} + 37099 x^{10} - 228980 x^{9} - 1521725 x^{8} + 698150 x^{7} + 24552875 x^{6} + 53553625 x^{5} - 77255625 x^{4} - 536596250 x^{3} - 999059375 x^{2} - 858165625 x - 291503125 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1435834106724053230466538641825103125=5^{5}\cdot 61^{3}\cdot 397^{3}\cdot 5687830021^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $257.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61, 397, 5687830021$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5} a^{7} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{25} a^{8} - \frac{2}{25} a^{6} + \frac{3}{25} a^{5} + \frac{3}{25} a^{4} - \frac{11}{25} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{125} a^{9} + \frac{3}{125} a^{7} + \frac{53}{125} a^{6} + \frac{18}{125} a^{5} - \frac{46}{125} a^{4} + \frac{2}{5} a^{3} - \frac{12}{25} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{125} a^{10} - \frac{2}{125} a^{8} + \frac{3}{125} a^{7} + \frac{28}{125} a^{6} + \frac{39}{125} a^{5} + \frac{2}{25} a^{4} - \frac{6}{25} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{625} a^{11} - \frac{2}{625} a^{9} + \frac{3}{625} a^{8} + \frac{3}{625} a^{7} + \frac{289}{625} a^{6} + \frac{37}{125} a^{5} + \frac{29}{125} a^{4} + \frac{4}{25} a^{3} + \frac{11}{25} a^{2} + \frac{1}{5}$, $\frac{1}{3125} a^{12} + \frac{8}{3125} a^{10} + \frac{3}{3125} a^{9} + \frac{33}{3125} a^{8} - \frac{56}{3125} a^{7} - \frac{177}{625} a^{6} + \frac{162}{625} a^{5} + \frac{44}{125} a^{4} + \frac{7}{125} a^{3} + \frac{11}{25} a^{2} - \frac{1}{25} a + \frac{2}{5}$, $\frac{1}{15625} a^{13} - \frac{12}{15625} a^{11} + \frac{53}{15625} a^{10} - \frac{2}{15625} a^{9} + \frac{284}{15625} a^{8} + \frac{296}{3125} a^{7} + \frac{166}{3125} a^{6} - \frac{44}{125} a^{5} + \frac{34}{625} a^{4} + \frac{19}{125} a^{3} - \frac{19}{125} a^{2} + \frac{2}{25} a - \frac{6}{25}$, $\frac{1}{15625} a^{14} - \frac{2}{15625} a^{12} + \frac{3}{15625} a^{11} - \frac{47}{15625} a^{10} + \frac{39}{15625} a^{9} + \frac{7}{3125} a^{8} - \frac{276}{3125} a^{7} - \frac{62}{625} a^{6} - \frac{77}{625} a^{5} + \frac{7}{125} a^{4} - \frac{2}{25} a^{2} + \frac{2}{25} a$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6692499501300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 58320 |
| The 72 conjugacy class representatives for [3^5:2]S(5) are not computed |
| Character table for [3^5:2]S(5) is not computed |
Intermediate fields
| 5.5.24217.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }$ | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 61.6.3.1 | $x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 397 | Data not computed | ||||||
| 5687830021 | Data not computed | ||||||