Normalized defining polynomial
\( x^{15} - 75 x^{13} - 123 x^{12} + 1854 x^{11} + 5532 x^{10} - 15374 x^{9} - 79524 x^{8} - 19527 x^{7} + 386911 x^{6} + 652257 x^{5} - 170775 x^{4} - 1591761 x^{3} - 1909161 x^{2} - 991875 x - 197317 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(138622929316925604547946697=3^{15}\cdot 11^{13}\cdot 23^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{23} a^{12} - \frac{6}{23} a^{10} - \frac{8}{23} a^{9} - \frac{9}{23} a^{8} - \frac{11}{23} a^{7} - \frac{10}{23} a^{6} + \frac{10}{23} a^{5} + \frac{5}{23} a^{3}$, $\frac{1}{23} a^{13} - \frac{6}{23} a^{11} - \frac{8}{23} a^{10} - \frac{9}{23} a^{9} - \frac{11}{23} a^{8} - \frac{10}{23} a^{7} + \frac{10}{23} a^{6} + \frac{5}{23} a^{4}$, $\frac{1}{142246152185314722620989} a^{14} + \frac{1798646772246468991179}{142246152185314722620989} a^{13} - \frac{2516559212023943632978}{142246152185314722620989} a^{12} - \frac{65861314031020933039413}{142246152185314722620989} a^{11} + \frac{60722298689155043408716}{142246152185314722620989} a^{10} + \frac{55051161193458383546271}{142246152185314722620989} a^{9} + \frac{7896788332046603868345}{142246152185314722620989} a^{8} + \frac{54413102618664943132387}{142246152185314722620989} a^{7} - \frac{44109143253565810696658}{142246152185314722620989} a^{6} - \frac{55462432988439340926472}{142246152185314722620989} a^{5} + \frac{58955209326650974363149}{142246152185314722620989} a^{4} + \frac{61673585276561651532457}{142246152185314722620989} a^{3} + \frac{269133178435997183520}{6184615312404987940043} a^{2} - \frac{1626118907849408668083}{6184615312404987940043} a + \frac{2381774337123534083834}{6184615312404987940043}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 164409576.613 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 810 |
| The 18 conjugacy class representatives for [3^4:2]5 |
| Character table for [3^4:2]5 |
Intermediate fields
| \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.3.2.1 | $x^{3} - 23$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 23.3.2.1 | $x^{3} - 23$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |