Normalized defining polynomial
\( x^{15} - 2 x^{14} - 133 x^{13} + 326 x^{12} + 6618 x^{11} - 19414 x^{10} - 150182 x^{9} + 529243 x^{8} + 1451632 x^{7} - 6655484 x^{6} - 2779461 x^{5} + 32472178 x^{4} - 23518862 x^{3} - 22419019 x^{2} + 15844999 x + 3358343 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13487790856470777216989713088929=11^{12}\cdot 73^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(803=11\cdot 73\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{803}(64,·)$, $\chi_{803}(1,·)$, $\chi_{803}(738,·)$, $\chi_{803}(356,·)$, $\chi_{803}(137,·)$, $\chi_{803}(300,·)$, $\chi_{803}(658,·)$, $\chi_{803}(366,·)$, $\chi_{803}(592,·)$, $\chi_{803}(81,·)$, $\chi_{803}(210,·)$, $\chi_{803}(147,·)$, $\chi_{803}(665,·)$, $\chi_{803}(731,·)$, $\chi_{803}(575,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{62489531289280267687631580873035950153873089} a^{14} + \frac{2608114117805246938306875037042530990619400}{20829843763093422562543860291011983384624363} a^{13} - \frac{455847671199271903657939172866848046446462}{20829843763093422562543860291011983384624363} a^{12} + \frac{3005512008984236341231918743351909466175698}{20829843763093422562543860291011983384624363} a^{11} - \frac{4657465652685871239787170357992499977395420}{62489531289280267687631580873035950153873089} a^{10} - \frac{19574897864621605729195719190900527581957323}{62489531289280267687631580873035950153873089} a^{9} + \frac{27887472371032199938958357321582395143096251}{62489531289280267687631580873035950153873089} a^{8} + \frac{10096071436595513741194812375300421747002493}{20829843763093422562543860291011983384624363} a^{7} - \frac{9103984088054973875435639586373227591733699}{62489531289280267687631580873035950153873089} a^{6} - \frac{8142734416498310754463240380691561038040477}{20829843763093422562543860291011983384624363} a^{5} + \frac{19063956614667395806571180650317760292819537}{62489531289280267687631580873035950153873089} a^{4} + \frac{18627998245009777631574999269561173790096060}{62489531289280267687631580873035950153873089} a^{3} - \frac{3487276855978325745338484219582872119457938}{20829843763093422562543860291011983384624363} a^{2} - \frac{3583393489370929826540601204675898735604386}{20829843763093422562543860291011983384624363} a - \frac{272921787988745541801454940016391527068833}{1453244913704192271805385601698510468694723}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35246330370.40924 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.5329.1, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{3}$ | R | $15$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | $15$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{15}$ | $15$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.15.12.1 | $x^{15} + 165 x^{10} + 5324 x^{5} + 323433$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |
| $73$ | 73.15.10.1 | $x^{15} + 5835255 x^{6} - 28398241 x^{3} + 259133949125$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |