Normalized defining polynomial
\( x^{15} - 380 x^{13} - 340 x^{12} + 52195 x^{11} + 87400 x^{10} - 3209275 x^{9} - 7203495 x^{8} + 88746755 x^{7} + 232522890 x^{6} - 980823484 x^{5} - 2991213425 x^{4} + 2138248810 x^{3} + 13213071845 x^{2} + 13667219210 x + 4461221029 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(134440883537670166857779026031494140625=5^{24}\cdot 7^{10}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $348.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{2}{7} a^{5} + \frac{1}{7} a^{4} + \frac{3}{7} a^{3} + \frac{3}{7} a^{2} + \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{14} a^{7} + \frac{2}{7} a^{5} - \frac{1}{7} a^{4} + \frac{1}{7} a^{3} + \frac{1}{7} a^{2} - \frac{1}{7} a + \frac{5}{14}$, $\frac{1}{14} a^{8} + \frac{3}{7} a^{5} - \frac{1}{7} a^{4} + \frac{2}{7} a^{3} - \frac{1}{2} a + \frac{2}{7}$, $\frac{1}{98} a^{9} + \frac{1}{98} a^{8} - \frac{1}{49} a^{7} - \frac{3}{49} a^{6} + \frac{17}{49} a^{5} + \frac{11}{49} a^{4} + \frac{3}{49} a^{3} + \frac{37}{98} a^{2} - \frac{1}{2} a + \frac{17}{49}$, $\frac{1}{4018} a^{10} - \frac{26}{2009} a^{8} - \frac{53}{4018} a^{7} + \frac{83}{2009} a^{6} - \frac{867}{2009} a^{5} - \frac{13}{49} a^{4} - \frac{45}{98} a^{3} - \frac{6}{49} a^{2} + \frac{11}{49} a - \frac{29}{98}$, $\frac{1}{56252} a^{11} - \frac{1}{14063} a^{10} + \frac{71}{56252} a^{9} - \frac{9}{56252} a^{8} - \frac{729}{56252} a^{7} - \frac{101}{4018} a^{6} - \frac{379}{2009} a^{5} - \frac{267}{1372} a^{4} + \frac{23}{686} a^{3} - \frac{29}{1372} a^{2} - \frac{439}{1372} a + \frac{533}{1372}$, $\frac{1}{337512} a^{12} - \frac{1}{112504} a^{11} - \frac{31}{337512} a^{10} + \frac{605}{168756} a^{9} + \frac{62}{14063} a^{8} + \frac{1591}{112504} a^{7} + \frac{215}{3444} a^{6} - \frac{15213}{112504} a^{5} - \frac{391}{2744} a^{4} - \frac{3833}{8232} a^{3} + \frac{71}{1029} a^{2} + \frac{106}{343} a - \frac{1063}{8232}$, $\frac{1}{337512} a^{13} + \frac{1}{168756} a^{11} + \frac{25}{337512} a^{10} + \frac{101}{28126} a^{9} + \frac{601}{112504} a^{8} - \frac{4805}{337512} a^{7} - \frac{75}{2744} a^{6} - \frac{3109}{8036} a^{5} + \frac{1469}{4116} a^{4} + \frac{997}{8232} a^{3} - \frac{251}{1372} a^{2} - \frac{1621}{8232} a - \frac{489}{2744}$, $\frac{1}{104398237477724388839302474764307364568} a^{14} - \frac{62863904468848458810792521277865}{52199118738862194419651237382153682284} a^{13} - \frac{12899188873976360658787464419657}{26099559369431097209825618691076841142} a^{12} + \frac{52153396656649759562144366104987}{34799412492574796279767491588102454856} a^{11} - \frac{3149876218076404119806594608534621}{26099559369431097209825618691076841142} a^{10} - \frac{279510907795136299408601002448834215}{104398237477724388839302474764307364568} a^{9} + \frac{956267239904855001655071151916060983}{104398237477724388839302474764307364568} a^{8} - \frac{447368847041347837200680585269531877}{14914033925389198405614639252043909224} a^{7} + \frac{750858505548977323130313961991305615}{13049779684715548604912809345538420571} a^{6} + \frac{3597903257293452456921673288300631566}{13049779684715548604912809345538420571} a^{5} + \frac{960556045880501548027097271688112753}{2546298475066448508275670116202618648} a^{4} - \frac{169262865499404415830041323997303667}{424383079177741418045945019367103108} a^{3} - \frac{1092444771019606762933244419326050591}{2546298475066448508275670116202618648} a^{2} + \frac{288524412110324785441775408470010309}{2546298475066448508275670116202618648} a + \frac{611606503171551363195259865863674623}{1273149237533224254137835058101309324}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 757850777329000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5^2:C_3$ (as 15T9):
| A solvable group of order 75 |
| The 11 conjugacy class representatives for $C_5^2 : C_3$ |
| Character table for $C_5^2 : C_3$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{5}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 41 | Data not computed | ||||||