Normalized defining polynomial
\( x^{15} - 164 x^{13} - 14 x^{12} + 10897 x^{11} + 1462 x^{10} - 375108 x^{9} - 53828 x^{8} + 7054867 x^{7} + 792140 x^{6} - 68813252 x^{5} - 2895510 x^{4} + 272475995 x^{3} - 17391330 x^{2} + 297900 x - 1080 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13279976064852192427125304206928000000=2^{10}\cdot 5^{6}\cdot 17^{2}\cdot 37^{5}\cdot 4441^{2}\cdot 1449121^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $298.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17, 37, 4441, 1449121$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{7} - \frac{1}{8} a^{4} + \frac{3}{16} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{96} a^{8} - \frac{1}{96} a^{7} + \frac{1}{24} a^{6} - \frac{5}{48} a^{5} - \frac{11}{96} a^{4} - \frac{1}{96} a^{3} + \frac{7}{48} a^{2} - \frac{5}{24} a + \frac{1}{4}$, $\frac{1}{192} a^{9} + \frac{1}{64} a^{7} - \frac{1}{32} a^{6} + \frac{1}{64} a^{5} + \frac{1}{16} a^{4} - \frac{11}{192} a^{3} - \frac{5}{32} a^{2} + \frac{1}{48} a + \frac{1}{8}$, $\frac{1}{4608} a^{10} + \frac{1}{4608} a^{9} - \frac{13}{4608} a^{8} - \frac{35}{4608} a^{7} - \frac{19}{4608} a^{6} + \frac{559}{4608} a^{5} - \frac{23}{512} a^{4} - \frac{73}{4608} a^{3} + \frac{139}{2304} a^{2} + \frac{85}{384} a + \frac{11}{64}$, $\frac{1}{36864} a^{11} - \frac{1}{9216} a^{10} - \frac{11}{6144} a^{9} + \frac{5}{6144} a^{8} - \frac{95}{3072} a^{7} + \frac{349}{6144} a^{6} - \frac{2149}{18432} a^{5} + \frac{1921}{18432} a^{4} + \frac{1171}{36864} a^{3} - \frac{1769}{18432} a^{2} - \frac{189}{1024} a - \frac{7}{512}$, $\frac{1}{884736} a^{12} - \frac{1}{98304} a^{11} + \frac{41}{442368} a^{10} - \frac{83}{110592} a^{9} - \frac{1093}{442368} a^{8} + \frac{1849}{442368} a^{7} - \frac{451}{55296} a^{6} - \frac{3907}{221184} a^{5} - \frac{5375}{98304} a^{4} + \frac{53071}{884736} a^{3} + \frac{4089}{16384} a^{2} + \frac{3041}{8192} a + \frac{1121}{4096}$, $\frac{1}{21233664} a^{13} + \frac{1}{10616832} a^{12} - \frac{17}{21233664} a^{11} + \frac{119}{10616832} a^{10} + \frac{4471}{10616832} a^{9} + \frac{13345}{5308416} a^{8} - \frac{17597}{1179648} a^{7} - \frac{9413}{196608} a^{6} + \frac{867205}{21233664} a^{5} - \frac{1087399}{10616832} a^{4} - \frac{909589}{21233664} a^{3} + \frac{7775}{1179648} a^{2} - \frac{275897}{589824} a - \frac{42965}{98304}$, $\frac{1}{509607936} a^{14} - \frac{11}{509607936} a^{13} - \frac{43}{509607936} a^{12} + \frac{17}{18874368} a^{11} + \frac{731}{63700992} a^{10} - \frac{31433}{254803968} a^{9} + \frac{158209}{254803968} a^{8} - \frac{196357}{28311552} a^{7} - \frac{17767439}{509607936} a^{6} - \frac{19523333}{169869312} a^{5} - \frac{61553183}{509607936} a^{4} - \frac{90222401}{509607936} a^{3} - \frac{149791}{1048576} a^{2} - \frac{6550681}{14155776} a + \frac{214481}{2359296}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 279965726842000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6000 |
| The 40 conjugacy class representatives for [D(5)^3]S(3)=D(5)wrS(3) |
| Character table for [D(5)^3]S(3)=D(5)wrS(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{5}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{5}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $15$ | $15$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.5.6.2 | $x^{5} + 15 x^{2} + 5$ | $5$ | $1$ | $6$ | $D_{5}$ | $[3/2]_{2}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.10.0.1 | $x^{10} - x + 7$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 37 | Data not computed | ||||||
| 4441 | Data not computed | ||||||
| 1449121 | Data not computed | ||||||