Normalized defining polynomial
\( x^{15} - 3 x^{14} - 293157 x^{13} + 28250964 x^{12} + 29992349079 x^{11} - 5439011478175 x^{10} - 997902540485763 x^{9} + 309436858997805328 x^{8} - 8002301492179106409 x^{7} - 3902925851520568641401 x^{6} + 334208520172135190753528 x^{5} + 5737266459200156336848041 x^{4} - 1524999325458746904578062859 x^{3} + 50654221628876906428539791586 x^{2} - 367428540321761276369592413252 x - 1788115490230017965919208633168 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1297349726010274931651495881999903609711923026220354873585739003189726789242882757=19^{5}\cdot 103^{5}\cdot 244301^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $255{,}586.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 103, 244301$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{244301} a^{5} - \frac{1}{244301} a^{4} - \frac{97720}{244301} a^{3} + \frac{19544}{244301} a^{2} + \frac{95766}{244301} a - \frac{91779}{244301}$, $\frac{1}{244301} a^{6} - \frac{97721}{244301} a^{4} - \frac{78176}{244301} a^{3} + \frac{115310}{244301} a^{2} + \frac{3987}{244301} a - \frac{91779}{244301}$, $\frac{1}{244301} a^{7} + \frac{68404}{244301} a^{4} + \frac{56678}{244301} a^{3} - \frac{82007}{244301} a^{2} + \frac{63401}{244301} a + \frac{42653}{244301}$, $\frac{1}{488602} a^{8} - \frac{1}{488602} a^{7} - \frac{1}{488602} a^{5} - \frac{93811}{244301} a^{4} + \frac{39127}{244301} a^{3} + \frac{26580}{244301} a^{2} + \frac{37337}{488602} a + \frac{26372}{244301}$, $\frac{1}{488602} a^{9} - \frac{1}{488602} a^{7} - \frac{1}{488602} a^{6} - \frac{1}{488602} a^{5} + \frac{95806}{244301} a^{4} + \frac{5511}{244301} a^{3} + \frac{16855}{488602} a^{2} + \frac{48585}{488602} a + \frac{46746}{244301}$, $\frac{1}{119365957202} a^{10} - \frac{1}{59682978601} a^{9} + \frac{24431}{59682978601} a^{8} + \frac{117264}{59682978601} a^{7} - \frac{130945}{119365957202} a^{6} + \frac{80287}{119365957202} a^{5} - \frac{4870167484}{59682978601} a^{4} - \frac{49537794051}{119365957202} a^{3} - \frac{58854872663}{119365957202} a^{2} + \frac{16748362383}{119365957202} a - \frac{11837051022}{59682978601}$, $\frac{1}{119365957202} a^{11} + \frac{24429}{59682978601} a^{9} + \frac{87951}{119365957202} a^{8} + \frac{46905}{59682978601} a^{7} - \frac{181603}{119365957202} a^{6} - \frac{137825}{119365957202} a^{5} + \frac{53021611961}{119365957202} a^{4} - \frac{33732718385}{119365957202} a^{3} + \frac{11284665915}{119365957202} a^{2} - \frac{14919938257}{119365957202} a - \frac{28907518066}{59682978601}$, $\frac{1}{119365957202} a^{12} - \frac{29317}{59682978601} a^{9} + \frac{51793}{59682978601} a^{8} + \frac{93889}{59682978601} a^{7} + \frac{31349}{59682978601} a^{6} + \frac{33819}{59682978601} a^{5} + \frac{44670584809}{119365957202} a^{4} + \frac{16076940981}{119365957202} a^{3} + \frac{271269431}{59682978601} a^{2} + \frac{4857983347}{119365957202} a - \frac{19594066837}{59682978601}$, $\frac{1}{119365957202} a^{13} - \frac{6841}{59682978601} a^{9} + \frac{79}{59682978601} a^{8} + \frac{81381}{59682978601} a^{7} + \frac{65168}{59682978601} a^{6} + \frac{14647}{119365957202} a^{5} - \frac{37419092743}{119365957202} a^{4} + \frac{10939920761}{59682978601} a^{3} - \frac{31403373781}{119365957202} a^{2} - \frac{3121713515}{59682978601} a + \frac{13117720369}{59682978601}$, $\frac{1}{266891898371614075224921318601701780773225150413679426531283035558347756080774423090612120795433308920893011183657038740} a^{14} - \frac{171927268992977933929970900867855179288178043165219540415573891324994219088277876436470112881557114911387467}{53378379674322815044984263720340356154645030082735885306256607111669551216154884618122424159086661784178602236731407748} a^{13} + \frac{581042098357781110072443426156505821884600606866018143905344309346898472259606444784284875459957792349024363}{266891898371614075224921318601701780773225150413679426531283035558347756080774423090612120795433308920893011183657038740} a^{12} + \frac{207197622580459631387127405603163475004206522667088360647841634830781720755734892630546340856504209925643467}{66722974592903518806230329650425445193306287603419856632820758889586939020193605772653030198858327230223252795914259685} a^{11} + \frac{75947000774492902762529915934375228791433313475287086899615989808429160669001034347603851702137395701552003}{266891898371614075224921318601701780773225150413679426531283035558347756080774423090612120795433308920893011183657038740} a^{10} + \frac{39984115768574872252197168702263347800047820895480612426618348055532827311892149383453997388803133158067680052389}{266891898371614075224921318601701780773225150413679426531283035558347756080774423090612120795433308920893011183657038740} a^{9} + \frac{59161607337477092855444355588351499102593081721244911770899456829786311948035083106329435521250022093900062234619}{266891898371614075224921318601701780773225150413679426531283035558347756080774423090612120795433308920893011183657038740} a^{8} + \frac{1165847315043767326889559086932652037198303290740781696253944508473220273735568868528299877259884914761950248955}{26689189837161407522492131860170178077322515041367942653128303555834775608077442309061212079543330892089301118365703874} a^{7} - \frac{95876481722454418432676186906993619754795305904490787656817247791106394947399988092307424535963587060694750166869}{266891898371614075224921318601701780773225150413679426531283035558347756080774423090612120795433308920893011183657038740} a^{6} + \frac{46233262438298328715169788796076682859149394629782354580763950443980807310796817524352668936370921803613587031547}{24262899851964915929538301691063798252111377310334493321025730505304341461888583917328374617766664447353910107605185340} a^{5} - \frac{21134472287944197422510106421010847311816825220389617783751666681472828049979993971566288551008686366204105261375775354}{66722974592903518806230329650425445193306287603419856632820758889586939020193605772653030198858327230223252795914259685} a^{4} - \frac{22510691789206204043779276433640341364584359162209235878796841167119583602233085308442976907512917803919425965047512347}{266891898371614075224921318601701780773225150413679426531283035558347756080774423090612120795433308920893011183657038740} a^{3} + \frac{11178148935067011524458236543236903353995811267347750483645022018978132391811495324637995841532466624768424180653959569}{53378379674322815044984263720340356154645030082735885306256607111669551216154884618122424159086661784178602236731407748} a^{2} + \frac{27910700829096057186149652413216794288359500906244775434666174779940916506894612071573252229234812957399708860930180334}{66722974592903518806230329650425445193306287603419856632820758889586939020193605772653030198858327230223252795914259685} a - \frac{4005891992239978408716841688832700283116946925632191172668165316802770493697317489017995682758221859699815823629546261}{66722974592903518806230329650425445193306287603419856632820758889586939020193605772653030198858327230223252795914259685}$
Class group and class number
Not computed
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3000 |
| The 38 conjugacy class representatives for [1/2.D(5)^3]S(3) |
| Character table for [1/2.D(5)^3]S(3) is not computed |
Intermediate fields
| 3.3.1957.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | $15$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | $15$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | $15$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 103 | Data not computed | ||||||
| 244301 | Data not computed | ||||||