Normalized defining polynomial
\( x^{15} - 204 x^{13} - 75 x^{12} + 14715 x^{11} + 7605 x^{10} - 457975 x^{9} - 231300 x^{8} + 6395700 x^{7} + 4605500 x^{6} - 40117500 x^{5} - 45475500 x^{4} + 87752500 x^{3} + 156375000 x^{2} + 48750000 x - 12500000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1286032269717057992679562824900000000=2^{8}\cdot 3^{20}\cdot 5^{8}\cdot 11^{6}\cdot 113^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $255.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{6} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{25} a^{8} + \frac{1}{25} a^{6} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3}$, $\frac{1}{50} a^{9} - \frac{2}{25} a^{7} - \frac{1}{10} a^{6} - \frac{1}{10} a^{5} - \frac{1}{2} a^{4} + \frac{1}{10} a^{3}$, $\frac{1}{50} a^{10} - \frac{1}{10} a^{7} - \frac{1}{50} a^{6} - \frac{1}{10} a^{5} - \frac{3}{10} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{500} a^{11} - \frac{1}{125} a^{9} - \frac{1}{100} a^{8} + \frac{3}{100} a^{7} + \frac{1}{20} a^{6} - \frac{1}{20} a^{5} - \frac{1}{10} a^{4} + \frac{3}{10} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2500} a^{12} - \frac{1}{625} a^{10} - \frac{1}{100} a^{9} + \frac{3}{500} a^{8} - \frac{19}{500} a^{7} - \frac{1}{20} a^{6} - \frac{1}{50} a^{5} + \frac{9}{50} a^{4} - \frac{3}{10} a^{3} - \frac{1}{5} a$, $\frac{1}{50000} a^{13} - \frac{1}{12500} a^{11} - \frac{3}{2000} a^{10} - \frac{17}{10000} a^{9} - \frac{79}{10000} a^{8} + \frac{41}{2000} a^{7} + \frac{17}{500} a^{6} - \frac{43}{500} a^{5} + \frac{41}{100} a^{4} + \frac{7}{20} a^{3} - \frac{1}{100} a^{2} + \frac{1}{20} a - \frac{1}{2}$, $\frac{1}{228191244423788940329896093000000} a^{14} - \frac{136615384929581869398218557}{22819124442378894032989609300000} a^{13} + \frac{278535333010006789824281637}{28523905552973617541237011625000} a^{12} + \frac{26542084701039676073062327841}{45638248884757788065979218600000} a^{11} + \frac{209786256665153562327797641853}{45638248884757788065979218600000} a^{10} - \frac{63050408427318540242883128889}{45638248884757788065979218600000} a^{9} + \frac{178774363007799216696325969067}{9127649776951557613195843720000} a^{8} + \frac{370100635701845590163749503419}{4563824888475778806597921860000} a^{7} - \frac{108764072018548718907987210529}{1140956222118944701649480465000} a^{6} - \frac{35385019919195858853409048617}{456382488847577880659792186000} a^{5} + \frac{44309883619562470919265211363}{91276497769515576131958437200} a^{4} - \frac{24472829766644979861395876901}{456382488847577880659792186000} a^{3} - \frac{2392141729663018732167567277}{18255299553903115226391687440} a^{2} + \frac{414563676848467808592031553}{2281912444237889403298960930} a - \frac{176012700452036004306350237}{912764977695155761319584372}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 207449918613000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 233280 |
| The 48 conjugacy class representatives for [1/2.S(3)^5]A(5) |
| Character table for [1/2.S(3)^5]A(5) is not computed |
Intermediate fields
| 5.5.6180196.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.6.6.8 | $x^{6} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.9.6.1 | $x^{9} - 25 x^{3} + 250$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 113 | Data not computed | ||||||