Normalized defining polynomial
\( x^{15} - 900 x^{13} + 295200 x^{11} - 229440 x^{10} - 43382500 x^{9} + 108891000 x^{8} + 2895435000 x^{7} - 13150614000 x^{6} - 62996451600 x^{5} + 448279050000 x^{4} - 59390642500 x^{3} - 4216862250000 x^{2} + 8995972800000 x - 5078976310000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(119602134460593174671103515625000000000000000000=2^{18}\cdot 3^{20}\cdot 5^{28}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1375.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{10} a^{6}$, $\frac{1}{10} a^{7}$, $\frac{1}{3700} a^{8} - \frac{8}{185} a^{6} - \frac{1}{10} a^{5} - \frac{8}{37} a^{4} - \frac{76}{185} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{3700} a^{9} - \frac{8}{185} a^{7} - \frac{3}{185} a^{5} - \frac{76}{185} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{136900} a^{10} - \frac{3}{34225} a^{8} + \frac{253}{13690} a^{6} - \frac{104}{1369} a^{5} + \frac{31}{74} a^{4} - \frac{84}{185} a^{3}$, $\frac{1}{136900} a^{11} - \frac{3}{34225} a^{9} + \frac{253}{13690} a^{7} + \frac{329}{13690} a^{6} + \frac{7}{370} a^{5} - \frac{84}{185} a^{4}$, $\frac{1}{273800} a^{12} + \frac{9}{136900} a^{8} - \frac{52}{1369} a^{7} + \frac{113}{27380} a^{6} + \frac{47}{2738} a^{5} + \frac{16}{37} a^{4} - \frac{29}{370} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2380691000} a^{13} - \frac{1}{2573720} a^{12} + \frac{613}{238069100} a^{11} + \frac{11}{3217150} a^{10} + \frac{8763}{238069100} a^{9} - \frac{26163}{238069100} a^{8} + \frac{651}{1286860} a^{7} - \frac{26481}{1286860} a^{6} - \frac{29362}{321715} a^{5} + \frac{7291}{17390} a^{4} + \frac{3284}{8695} a^{3} - \frac{33}{94} a^{2} + \frac{17}{47} a - \frac{16}{47}$, $\frac{1}{22560825674707011600569799771377891409000} a^{14} + \frac{133544045697347107553023264013}{902433026988280464022791990855115656360} a^{13} - \frac{4787521799433778190891306718850933}{4512165134941402320113959954275578281800} a^{12} - \frac{3497379018974427881858635014495823}{2256082567470701160056979977137789140900} a^{11} + \frac{3492770461737213157000293697394627}{1128041283735350580028489988568894570450} a^{10} + \frac{113467622334279201852140864644180309}{1128041283735350580028489988568894570450} a^{9} - \frac{4642205410706040060013939771221779}{37601376124511686000949666285629819015} a^{8} + \frac{1158013230488265029304762599763721}{239118449122490848972652885759172140} a^{7} + \frac{133651956979823651640111854970819193}{4065013635082344432535099057905926380} a^{6} - \frac{20719915671296431059811829535796825}{406501363508234443253509905790592638} a^{5} - \frac{773841912663243130894014886084361}{10986523338060390358202970426772774} a^{4} + \frac{1657081632440856640223443787213745}{10986523338060390358202970426772774} a^{3} + \frac{14377571936465552944564200351979}{890799189572464083097538142711306} a^{2} + \frac{201707311517380004021602847862352}{445399594786232041548769071355653} a - \frac{29173069931089375882862011037887}{445399594786232041548769071355653}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25933506913100000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1500 |
| The 19 conjugacy class representatives for 1/2[5^3:4]S(3) |
| Character table for 1/2[5^3:4]S(3) |
Intermediate fields
| 3.3.1620.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | R | $15$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.16.18 | $x^{12} + x^{10} + 6 x^{8} - 3 x^{6} + 6 x^{4} + x^{2} - 3$ | $6$ | $2$ | $16$ | $C_3 : C_4$ | $[2]_{3}^{2}$ | |
| $3$ | 3.3.4.4 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $[2]^{2}$ |
| 3.12.16.30 | $x^{12} + 93 x^{11} + 351 x^{10} + 3 x^{9} + 126 x^{8} - 297 x^{7} + 171 x^{6} + 243 x^{5} - 324 x^{4} - 54 x^{3} + 162 x^{2} - 243 x + 324$ | $3$ | $4$ | $16$ | $C_3 : C_4$ | $[2]^{4}$ | |
| $5$ | 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ |
| 5.10.19.14 | $x^{10} - 10 x^{5} + 80$ | $10$ | $1$ | $19$ | $C_5^2 : C_4$ | $[7/4, 9/4]_{4}$ | |
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.10.8.1 | $x^{10} - 37 x^{5} + 6845$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |