Normalized defining polynomial
\( x^{15} - 2223 x^{13} - 8892 x^{12} + 1702863 x^{11} + 13622904 x^{10} - 526988835 x^{9} - 6650815716 x^{8} + 51799388058 x^{7} + 1218971397600 x^{6} + 3560094069111 x^{5} - 59260129751988 x^{4} - 614578588468128 x^{3} - 2538598668416640 x^{2} - 5077197336833280 x - 4061757869466624 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(117757441598028025329119098118152643876169986889=3^{20}\cdot 67^{2}\cdot 131^{2}\cdot 401^{7}\cdot 512779^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1374.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 67, 131, 401, 512779$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{9} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{27} a^{5}$, $\frac{1}{162} a^{6} - \frac{1}{54} a^{5} - \frac{1}{18} a^{4} - \frac{1}{18} a^{3} - \frac{1}{2} a$, $\frac{1}{162} a^{7} - \frac{1}{18} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{486} a^{8} - \frac{1}{18} a^{4} - \frac{1}{18} a^{3} - \frac{1}{6} a^{2}$, $\frac{1}{4374} a^{9} + \frac{1}{486} a^{7} + \frac{1}{486} a^{6} - \frac{1}{18} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3}$, $\frac{1}{4374} a^{10} + \frac{1}{486} a^{7} - \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{419904} a^{11} - \frac{1}{8748} a^{10} - \frac{5}{139968} a^{9} - \frac{11}{11664} a^{8} - \frac{1}{5184} a^{7} - \frac{1}{1944} a^{6} - \frac{17}{1728} a^{5} + \frac{1}{48} a^{4} + \frac{5}{288} a^{3} + \frac{1}{9} a^{2} + \frac{5}{192} a - \frac{11}{48}$, $\frac{1}{73555621138734280704} a^{12} - \frac{5}{6718464} a^{11} - \frac{19257679995869}{2724282264397565952} a^{10} - \frac{30156863908627}{340535283049695744} a^{9} + \frac{373887104015695}{908094088132521984} a^{8} - \frac{328502482634399}{227023522033130496} a^{7} - \frac{1943712689756467}{908094088132521984} a^{6} + \frac{2984258354677}{175172470704576} a^{5} - \frac{593899750487329}{16816557187639296} a^{4} - \frac{665571568879651}{12612417890729472} a^{3} + \frac{1273320671274071}{11211038125092864} a^{2} + \frac{672803969838007}{1401379765636608} a + \frac{53115254951447}{700689882818304}$, $\frac{1}{4707559752878993965056} a^{13} - \frac{1}{588444969109874245632} a^{12} + \frac{229315175889337}{523062194764332662784} a^{11} + \frac{4661328153667133}{43588516230361055232} a^{10} - \frac{909143596509811}{174354064921444220928} a^{9} - \frac{1519}{2985984} a^{8} + \frac{42323453081648543}{19372673880160468992} a^{7} + \frac{6823508099938013}{14529505410120351744} a^{6} + \frac{9687680508138079}{1076259660008914944} a^{5} - \frac{8687824740077795}{403597372503343104} a^{4} - \frac{314418825677311313}{6457557960053489664} a^{3} - \frac{9242195201029033}{59792203333828608} a^{2} + \frac{3772116975444997}{44844152500371456} a + \frac{3478418643213143}{11211038125092864}$, $\frac{1}{903851472552766841290752} a^{14} + \frac{5}{75320956046063903440896} a^{13} + \frac{17}{11158660154972430139392} a^{12} - \frac{111132378119}{1362141132198782976} a^{11} + \frac{64795523970497255}{1239851128330270015488} a^{10} + \frac{1818542894742533}{929888346247702511616} a^{9} - \frac{7816072876480428067}{11158660154972430139392} a^{8} - \frac{478936723928473705}{464944173123851255808} a^{7} + \frac{137978410891737925}{619925564165135007744} a^{6} + \frac{1497558307127691047}{154981391041283751936} a^{5} - \frac{22117321668088339291}{413283709443423338496} a^{4} - \frac{477200662434972709}{8610077280071319552} a^{3} + \frac{603042222031272109}{4305038640035659776} a^{2} - \frac{13529933599436807}{179376610001485824} a - \frac{24938561614018993}{59792203333828608}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3043578245390000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 38880 |
| The 45 conjugacy class representatives for 1/2[S(3)^5]D(5) |
| Character table for 1/2[S(3)^5]D(5) is not computed |
Intermediate fields
| 5.5.160801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | R | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.6.8.2 | $x^{6} + 6 x^{5} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_3^2:C_4$ | $[2, 2]^{4}$ | |
| 3.6.8.4 | $x^{6} + 18 x^{2} + 63$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.6.0.1 | $x^{6} + x^{2} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 131 | Data not computed | ||||||
| 401 | Data not computed | ||||||
| 512779 | Data not computed | ||||||