Normalized defining polynomial
\( x^{15} - 7 x^{14} - 172 x^{13} + 720 x^{12} + 12969 x^{11} - 17004 x^{10} - 498180 x^{9} - 511152 x^{8} + 8799029 x^{7} + 26762204 x^{6} - 33530967 x^{5} - 284567340 x^{4} - 514816417 x^{3} - 345361931 x^{2} - 12649353 x + 46908749 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1172475902651239286742748476173737753125=3^{8}\cdot 5^{5}\cdot 17^{4}\cdot 401^{6}\cdot 405799^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $402.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17, 401, 405799$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{51} a^{13} - \frac{4}{51} a^{12} - \frac{1}{3} a^{11} + \frac{1}{51} a^{10} - \frac{16}{51} a^{9} - \frac{4}{51} a^{8} + \frac{7}{51} a^{7} - \frac{14}{51} a^{6} + \frac{4}{51} a^{5} + \frac{25}{51} a^{4} - \frac{19}{51} a^{3} - \frac{1}{51} a^{2} + \frac{3}{17} a - \frac{16}{51}$, $\frac{1}{8545938349862671421903255361382646054925399} a^{14} - \frac{17954719621111026793182067728226821229813}{2848646116620890473967751787127548684975133} a^{13} + \frac{748545386098213136637159373917393607469841}{2848646116620890473967751787127548684975133} a^{12} - \frac{2862347311558010094479657901463090658127118}{8545938349862671421903255361382646054925399} a^{11} - \frac{1355641669374858603895133768719208819289719}{2848646116620890473967751787127548684975133} a^{10} + \frac{1082809248198491706060134272946018366777926}{8545938349862671421903255361382646054925399} a^{9} - \frac{6406004517554932698382653717496894131645}{167567418624758263174573634536914628527949} a^{8} + \frac{3937132353353174642322951283616542610983301}{8545938349862671421903255361382646054925399} a^{7} - \frac{3944981051746180685756065580490886064959078}{8545938349862671421903255361382646054925399} a^{6} + \frac{3866190994994176736651233117150004129844242}{8545938349862671421903255361382646054925399} a^{5} - \frac{1029172268241049721124162779393821519009544}{2848646116620890473967751787127548684975133} a^{4} - \frac{660775641202485790098993877448075744363696}{8545938349862671421903255361382646054925399} a^{3} + \frac{2114620876554547156114131185982279627274295}{8545938349862671421903255361382646054925399} a^{2} + \frac{1024882655028648121684547637957053929126253}{8545938349862671421903255361382646054925399} a + \frac{313294836061592360845477577563026740818124}{8545938349862671421903255361382646054925399}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 308150608616000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4860 |
| The 48 conjugacy class representatives for [3^5:2]D(5) |
| Character table for [3^5:2]D(5) is not computed |
Intermediate fields
| 5.5.160801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | $15$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.6.8.9 | $x^{6} + 6 x^{5} + 9$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $5$ | 5.5.0.1 | $x^{5} - x + 2$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 401 | Data not computed | ||||||
| 405799 | Data not computed | ||||||