Normalized defining polynomial
\( x^{15} - 954 x^{13} - 3816 x^{12} + 361017 x^{11} + 2888136 x^{10} - 61956576 x^{9} - 812794176 x^{8} + 3049062912 x^{7} + 96468931584 x^{6} + 372367343943 x^{5} - 3036251842164 x^{4} - 35580044129184 x^{3} - 148771621883520 x^{2} - 297543243767040 x - 238034595013632 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(112060763989017760404926868179021718858129=3^{20}\cdot 23^{2}\cdot 59^{2}\cdot 67^{2}\cdot 401^{6}\cdot 967^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $545.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 23, 59, 67, 401, 967$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{9} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{27} a^{5}$, $\frac{1}{162} a^{6} - \frac{1}{18} a^{4} - \frac{1}{2} a$, $\frac{1}{486} a^{7} - \frac{1}{54} a^{5} - \frac{1}{27} a^{4} - \frac{1}{6} a^{2} + \frac{1}{3} a$, $\frac{1}{1458} a^{8} - \frac{1}{81} a^{5} - \frac{1}{18} a^{4} - \frac{1}{18} a^{3} + \frac{1}{9} a^{2} - \frac{1}{2} a$, $\frac{1}{4374} a^{9} + \frac{1}{486} a^{6} - \frac{1}{54} a^{5} + \frac{1}{27} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6} a$, $\frac{1}{4374} a^{10} - \frac{1}{54} a^{5} + \frac{1}{54} a^{4} - \frac{1}{18} a^{3} + \frac{1}{6} a$, $\frac{1}{419904} a^{11} - \frac{1}{8748} a^{10} + \frac{1}{69984} a^{9} - \frac{1}{5832} a^{8} - \frac{5}{15552} a^{7} + \frac{1}{1944} a^{6} - \frac{1}{81} a^{5} - \frac{1}{18} a^{4} - \frac{1}{54} a^{3} - \frac{1}{6} a^{2} - \frac{25}{64} a + \frac{7}{16}$, $\frac{1}{5401645056} a^{12} + \frac{5}{6718464} a^{11} - \frac{16261}{300091392} a^{10} + \frac{3829}{37511424} a^{9} + \frac{17801}{66686976} a^{8} + \frac{16775}{16671744} a^{7} - \frac{1247}{2083968} a^{6} + \frac{1949}{347328} a^{5} - \frac{86}{1809} a^{4} + \frac{2}{201} a^{3} + \frac{77237}{2469888} a^{2} - \frac{35921}{102912} a - \frac{2179}{17152}$, $\frac{1}{345705283584} a^{13} - \frac{1}{43213160448} a^{12} + \frac{7265}{6401949696} a^{11} + \frac{276757}{4801462272} a^{10} - \frac{2641135}{38411698176} a^{9} + \frac{221}{1492992} a^{8} + \frac{102713}{266747904} a^{7} + \frac{8659}{22228992} a^{6} - \frac{83267}{5557248} a^{5} + \frac{943}{231552} a^{4} - \frac{3514081}{474218496} a^{3} - \frac{1117921}{39518208} a^{2} - \frac{1243723}{3293184} a - \frac{1203}{274432}$, $\frac{1}{66375414448128} a^{14} + \frac{5}{5531284537344} a^{13} + \frac{49}{1229174341632} a^{12} - \frac{73459}{115235094528} a^{11} - \frac{234523333}{2458348683264} a^{10} + \frac{11421419}{614587170816} a^{9} + \frac{1097041}{5690621952} a^{8} + \frac{1183115}{2133983232} a^{7} + \frac{40151}{16671744} a^{6} - \frac{735859}{88915968} a^{5} + \frac{237023719}{10116661248} a^{4} + \frac{54775945}{1896873984} a^{3} - \frac{2615393}{105381888} a^{2} + \frac{4769129}{13172736} a - \frac{2010017}{4390912}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7850049219340000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 38880 |
| The 48 conjugacy class representatives for [1/2.S(3)^5]D(5) |
| Character table for [1/2.S(3)^5]D(5) is not computed |
Intermediate fields
| 5.5.160801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | $15$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.6.8.1 | $x^{6} + 6 x^{5} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_3^2:C_4$ | $[2, 2]^{4}$ | |
| 3.6.8.1 | $x^{6} + 6 x^{5} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_3^2:C_4$ | $[2, 2]^{4}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.3.2.1 | $x^{3} - 23$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.6.0.1 | $x^{6} - x + 15$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 59 | Data not computed | ||||||
| $67$ | 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||
| 967 | Data not computed | ||||||