Properties

Label 15.15.1100635382...0000.1
Degree $15$
Signature $[15, 0]$
Discriminant $2^{18}\cdot 3^{10}\cdot 5^{6}\cdot 7^{4}\cdot 11^{2}\cdot 107^{5}\cdot 239^{2}\cdot 1979^{4}\cdot 112901^{2}$
Root discriminant $7403.60$
Ramified primes $2, 3, 5, 7, 11, 107, 239, 1979, 112901$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T97

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-170225664000, -893684736000, -2023557580800, -2578386854400, -2022280888320, -1003145984640, -311196686976, -57384566496, -5496558912, -128106360, 19205152, 1171432, -15408, -1926, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 1926*x^13 - 15408*x^12 + 1171432*x^11 + 19205152*x^10 - 128106360*x^9 - 5496558912*x^8 - 57384566496*x^7 - 311196686976*x^6 - 1003145984640*x^5 - 2022280888320*x^4 - 2578386854400*x^3 - 2023557580800*x^2 - 893684736000*x - 170225664000)
 
gp: K = bnfinit(x^15 - 1926*x^13 - 15408*x^12 + 1171432*x^11 + 19205152*x^10 - 128106360*x^9 - 5496558912*x^8 - 57384566496*x^7 - 311196686976*x^6 - 1003145984640*x^5 - 2022280888320*x^4 - 2578386854400*x^3 - 2023557580800*x^2 - 893684736000*x - 170225664000, 1)
 

Normalized defining polynomial

\( x^{15} - 1926 x^{13} - 15408 x^{12} + 1171432 x^{11} + 19205152 x^{10} - 128106360 x^{9} - 5496558912 x^{8} - 57384566496 x^{7} - 311196686976 x^{6} - 1003145984640 x^{5} - 2022280888320 x^{4} - 2578386854400 x^{3} - 2023557580800 x^{2} - 893684736000 x - 170225664000 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[15, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(11006353820590761829104554853487124581411222177394688000000=2^{18}\cdot 3^{10}\cdot 5^{6}\cdot 7^{4}\cdot 11^{2}\cdot 107^{5}\cdot 239^{2}\cdot 1979^{4}\cdot 112901^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $7403.60$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7, 11, 107, 239, 1979, 112901$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{20} a^{5} - \frac{1}{10} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{40} a^{6} - \frac{1}{20} a^{4} + \frac{1}{10} a^{3}$, $\frac{1}{80} a^{7} - \frac{1}{40} a^{5} + \frac{1}{20} a^{4} - \frac{1}{2} a$, $\frac{1}{800} a^{8} + \frac{3}{400} a^{6} + \frac{1}{100} a^{5} + \frac{2}{25} a^{4} - \frac{1}{50} a^{3} + \frac{7}{100} a^{2} - \frac{1}{5}$, $\frac{1}{3200} a^{9} - \frac{7}{1600} a^{7} - \frac{1}{100} a^{6} - \frac{7}{400} a^{5} + \frac{3}{25} a^{4} + \frac{77}{400} a^{3} - \frac{1}{5} a^{2} - \frac{1}{20} a$, $\frac{1}{6400} a^{10} + \frac{1}{3200} a^{8} - \frac{1}{200} a^{7} + \frac{1}{160} a^{6} - \frac{1}{50} a^{5} + \frac{1}{160} a^{4} - \frac{19}{100} a^{3} + \frac{43}{200} a^{2} - \frac{2}{5}$, $\frac{1}{128000} a^{11} + \frac{7}{64000} a^{9} - \frac{3}{8000} a^{8} + \frac{1}{250} a^{7} - \frac{9}{4000} a^{6} - \frac{67}{3200} a^{5} + \frac{217}{2000} a^{4} + \frac{431}{2000} a^{3} - \frac{87}{1000} a^{2} + \frac{53}{200} a + \frac{1}{50}$, $\frac{1}{1280000} a^{12} + \frac{47}{640000} a^{10} + \frac{3}{20000} a^{9} - \frac{9}{40000} a^{8} - \frac{47}{20000} a^{7} - \frac{323}{32000} a^{6} - \frac{273}{20000} a^{5} + \frac{2161}{20000} a^{4} + \frac{291}{1250} a^{3} - \frac{59}{2000} a^{2} + \frac{93}{250} a + \frac{4}{25}$, $\frac{1}{56320000000} a^{13} - \frac{531}{1408000000} a^{12} - \frac{75083}{28160000000} a^{11} - \frac{38999}{1760000000} a^{10} + \frac{482649}{7040000000} a^{9} + \frac{1083131}{1760000000} a^{8} - \frac{482643}{1408000000} a^{7} - \frac{92737}{20000000} a^{6} + \frac{5707637}{1760000000} a^{5} + \frac{2710743}{40000000} a^{4} - \frac{18102509}{88000000} a^{3} + \frac{395401}{11000000} a^{2} - \frac{1314741}{4400000} a - \frac{265083}{1100000}$, $\frac{1}{7208960000000} a^{14} - \frac{1}{163840000000} a^{13} + \frac{59397}{3604480000000} a^{12} - \frac{3450813}{901120000000} a^{11} + \frac{20237433}{901120000000} a^{10} + \frac{13533591}{112640000000} a^{9} - \frac{50271501}{81920000000} a^{8} - \frac{829195141}{225280000000} a^{7} - \frac{397306139}{225280000000} a^{6} - \frac{44929091}{14080000000} a^{5} - \frac{4181361637}{56320000000} a^{4} - \frac{49893599}{256000000} a^{3} + \frac{213487487}{2816000000} a^{2} + \frac{34286479}{70400000} a - \frac{14285817}{35200000}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4636547341530000000000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T97:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 2592000
The 70 conjugacy class representatives for [A(5)^3:2]S(3) are not computed
Character table for [A(5)^3:2]S(3) is not computed

Intermediate fields

3.3.321.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 sibling: data not computed
Degree 30 siblings: data not computed
Degree 36 siblings: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R R $15$ ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.9.8$x^{6} + 4 x^{2} - 24$$2$$3$$9$$A_4\times C_2$$[2, 2, 3]^{3}$
2.6.9.2$x^{6} + 4 x^{2} - 8$$2$$3$$9$$A_4\times C_2$$[2, 2, 3]^{3}$
$3$3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.10.9.2$x^{10} + 3$$10$$1$$9$$F_{5}\times C_2$$[\ ]_{10}^{4}$
$5$5.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
5.6.3.2$x^{6} - 25 x^{2} + 250$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.5.4.1$x^{5} - 7$$5$$1$$4$$F_5$$[\ ]_{5}^{4}$
7.6.0.1$x^{6} + 3 x^{2} - x + 5$$1$$6$$0$$C_6$$[\ ]^{6}$
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.3.2.1$x^{3} - 11$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
107Data not computed
239Data not computed
1979Data not computed
112901Data not computed