Normalized defining polynomial
\( x^{15} - 5 x^{14} - 35 x^{13} + 165 x^{12} + 381 x^{11} - 1521 x^{10} - 1787 x^{9} + 4957 x^{8} + 3991 x^{7} - 5407 x^{6} - 4501 x^{5} + 1163 x^{4} + 1371 x^{3} + 81 x^{2} - 81 x - 9 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1087405383368698039133945856=2^{14}\cdot 3^{12}\cdot 7^{6}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{14} a^{12} + \frac{3}{14} a^{11} - \frac{1}{7} a^{10} + \frac{3}{14} a^{8} - \frac{2}{7} a^{7} + \frac{2}{7} a^{5} - \frac{5}{14} a^{4} - \frac{1}{2} a^{3} + \frac{3}{7} a + \frac{5}{14}$, $\frac{1}{42} a^{13} + \frac{1}{42} a^{12} - \frac{4}{21} a^{11} - \frac{1}{14} a^{10} + \frac{1}{14} a^{9} - \frac{1}{14} a^{8} - \frac{10}{21} a^{7} + \frac{2}{21} a^{6} + \frac{1}{42} a^{5} + \frac{17}{42} a^{4} + \frac{1}{3} a^{3} - \frac{1}{42} a^{2} - \frac{1}{2} a - \frac{1}{14}$, $\frac{1}{3889128400965402} a^{14} + \frac{1498523198363}{1944564200482701} a^{13} + \frac{14849249279975}{1944564200482701} a^{12} - \frac{153080889520171}{648188066827567} a^{11} + \frac{154083877912077}{648188066827567} a^{10} - \frac{7141257034848}{648188066827567} a^{9} + \frac{210462435679973}{1944564200482701} a^{8} + \frac{216353994850376}{1944564200482701} a^{7} - \frac{262103780309309}{3889128400965402} a^{6} - \frac{30022130733653}{1944564200482701} a^{5} + \frac{648134270825092}{1944564200482701} a^{4} - \frac{660225296012741}{1944564200482701} a^{3} - \frac{219362271028849}{648188066827567} a^{2} - \frac{260443041650837}{648188066827567} a + \frac{285592397866871}{648188066827567}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2319150768.71 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 360 |
| The 12 conjugacy class representatives for $\GL(2,4):C_2$ |
| Character table for $\GL(2,4):C_2$ |
Intermediate fields
| 3.3.404.1, 5.5.6413904.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $15$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{5}$ | $15$ | $15$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.4.2 | $x^{6} - 7 x^{3} + 147$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 101 | Data not computed | ||||||