Normalized defining polynomial
\( x^{15} - 2 x^{14} - 57 x^{13} + 48 x^{12} + 1160 x^{11} - 216 x^{10} - 10866 x^{9} - 2451 x^{8} + 48322 x^{7} + 23558 x^{6} - 90077 x^{5} - 56572 x^{4} + 40542 x^{3} + 17185 x^{2} - 7475 x + 625 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(108586003458674436566349398089=13^{10}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(403=13\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{403}(256,·)$, $\chi_{403}(1,·)$, $\chi_{403}(66,·)$, $\chi_{403}(35,·)$, $\chi_{403}(326,·)$, $\chi_{403}(295,·)$, $\chi_{403}(94,·)$, $\chi_{403}(16,·)$, $\chi_{403}(373,·)$, $\chi_{403}(250,·)$, $\chi_{403}(287,·)$, $\chi_{403}(380,·)$, $\chi_{403}(157,·)$, $\chi_{403}(126,·)$, $\chi_{403}(159,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{4}$, $\frac{1}{5} a^{9} - \frac{1}{5} a$, $\frac{1}{25} a^{10} - \frac{2}{25} a^{6} + \frac{1}{25} a^{2}$, $\frac{1}{25} a^{11} - \frac{2}{25} a^{7} + \frac{1}{25} a^{3}$, $\frac{1}{125} a^{12} + \frac{2}{125} a^{11} - \frac{1}{25} a^{9} - \frac{12}{125} a^{8} - \frac{9}{125} a^{7} - \frac{2}{25} a^{6} + \frac{1}{25} a^{5} + \frac{36}{125} a^{4} - \frac{43}{125} a^{3} + \frac{12}{25} a^{2}$, $\frac{1}{125} a^{13} + \frac{1}{125} a^{11} - \frac{2}{125} a^{9} - \frac{2}{25} a^{8} - \frac{2}{125} a^{7} - \frac{2}{25} a^{6} + \frac{1}{125} a^{5} + \frac{7}{25} a^{4} + \frac{26}{125} a^{3} + \frac{7}{25} a^{2} + \frac{1}{5} a$, $\frac{1}{3508417023896875} a^{14} - \frac{7232014025819}{3508417023896875} a^{13} + \frac{3229157600891}{3508417023896875} a^{12} - \frac{26906787802524}{3508417023896875} a^{11} - \frac{43630961601032}{3508417023896875} a^{10} + \frac{260711252254928}{3508417023896875} a^{9} - \frac{283986370456317}{3508417023896875} a^{8} + \frac{88797428925163}{3508417023896875} a^{7} - \frac{252896459092499}{3508417023896875} a^{6} - \frac{201259114472634}{3508417023896875} a^{5} - \frac{1379586146417524}{3508417023896875} a^{4} + \frac{581032295576661}{3508417023896875} a^{3} - \frac{119033173521659}{701683404779375} a^{2} - \frac{47541941031047}{140336680955875} a - \frac{949586663417}{5613467238235}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67543570601.28224 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.169.1, 5.5.923521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{15}$ | $15$ | $15$ | R | $15$ | $15$ | $15$ | $15$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | $15$ | $15$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.15.10.1 | $x^{15} + 79092 x^{6} - 228488 x^{3} + 80199288$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |
| $31$ | 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |