Normalized defining polynomial
\( x^{15} - 72 x^{13} - 13 x^{12} + 1827 x^{11} + 525 x^{10} - 19165 x^{9} - 6696 x^{8} + 74394 x^{7} + 32521 x^{6} - 112068 x^{5} - 53361 x^{4} + 60236 x^{3} + 22869 x^{2} - 9438 x - 121 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1084436136203703749597157948009=3^{24}\cdot 11^{10}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $100.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{33} a^{12} - \frac{2}{11} a^{10} - \frac{2}{33} a^{9} + \frac{4}{11} a^{8} - \frac{1}{11} a^{7} - \frac{14}{33} a^{6} + \frac{1}{11} a^{5} + \frac{4}{11} a^{4} - \frac{2}{11} a^{3} + \frac{1}{3}$, $\frac{1}{33} a^{13} + \frac{5}{33} a^{11} - \frac{13}{33} a^{10} - \frac{10}{33} a^{9} - \frac{1}{11} a^{8} - \frac{14}{33} a^{7} + \frac{1}{11} a^{6} - \frac{10}{33} a^{5} + \frac{16}{33} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{2444083161593464364926953} a^{14} + \frac{9845187460303558671248}{2444083161593464364926953} a^{13} + \frac{2393467504826593698370}{349154737370494909275279} a^{12} + \frac{156945247112478724308382}{2444083161593464364926953} a^{11} - \frac{1200937534615733988592348}{2444083161593464364926953} a^{10} - \frac{235231821779084117922842}{2444083161593464364926953} a^{9} - \frac{5572552029177151757239}{31741339760954082661389} a^{8} + \frac{633580577185668708045614}{2444083161593464364926953} a^{7} + \frac{7395299566465084805795}{31741339760954082661389} a^{6} + \frac{12765138240396314677277}{814694387197821454975651} a^{5} + \frac{365352037529980457508239}{814694387197821454975651} a^{4} + \frac{184081209628818473995652}{814694387197821454975651} a^{3} + \frac{58776589478421810600967}{222189378326678578629723} a^{2} + \frac{46834320066385082367515}{222189378326678578629723} a - \frac{64555723591528511238107}{222189378326678578629723}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43649743656.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times A_5$ (as 15T15):
| A non-solvable group of order 180 |
| The 15 conjugacy class representatives for $\GL(2,4)$ |
| Character table for $\GL(2,4)$ |
Intermediate fields
| 5.5.5184729.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
| Degree 30 sibling: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | R | $15$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | R | $15$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | $15$ | $15$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.8.9 | $x^{6} + 6 x^{5} + 9$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2, 2]^{2}$ |
| 3.9.16.12 | $x^{9} + 6 x^{8} + 3$ | $9$ | $1$ | $16$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| $11$ | 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 11.9.6.1 | $x^{9} - 121 x^{3} + 3993$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $23$ | 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 23.12.6.1 | $x^{12} + 365010 x^{6} - 6436343 x^{2} + 33308075025$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |