Normalized defining polynomial
\( x^{15} - 252 x^{13} - 616 x^{12} + 20664 x^{11} + 76020 x^{10} - 724486 x^{9} - 3305736 x^{8} + 11200371 x^{7} + 62607300 x^{6} - 67895478 x^{5} - 529878552 x^{4} + 124252044 x^{3} + 2032974720 x^{2} + 72902592 x - 2913293824 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1073301297242305974749981302950199296=2^{21}\cdot 3^{20}\cdot 7^{12}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $252.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{14} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{14} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{28} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{28} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{28} a^{10} - \frac{1}{28} a^{6}$, $\frac{1}{56} a^{11} - \frac{1}{56} a^{9} + \frac{1}{56} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{392} a^{12} - \frac{1}{56} a^{10} - \frac{1}{56} a^{8} + \frac{1}{56} a^{6} - \frac{1}{4} a^{4}$, $\frac{1}{784} a^{13} + \frac{1}{56} a^{7} + \frac{3}{16} a^{5} + \frac{1}{8} a^{3} - \frac{1}{4} a$, $\frac{1}{2116354438732059109122968510857014240512} a^{14} + \frac{179309925957833846664303074675970707}{529088609683014777280742127714253560128} a^{13} + \frac{84373847120583613966642328781692267}{75584087097573539611534589673464794304} a^{12} - \frac{288122246950156484440120935607266337}{37792043548786769805767294836732397152} a^{11} + \frac{556168924776102681551188575598475761}{37792043548786769805767294836732397152} a^{10} + \frac{45440216806377427371108950993085715}{75584087097573539611534589673464794304} a^{9} - \frac{226773206577656533177186169294554221}{151168174195147079223069179346929588608} a^{8} + \frac{490229555066368139881438342620850229}{18896021774393384902883647418366198576} a^{7} - \frac{4249710499195676628177846680590414187}{302336348390294158446138358693859177216} a^{6} - \frac{899371516241570062819549895304330995}{5398863364112395686538184976676056736} a^{5} + \frac{3754418613209421761433216367517983557}{21595453456449582746152739906704226944} a^{4} - \frac{379487768335642947833902956957306549}{1349715841028098921634546244169014184} a^{3} - \frac{1625732358516630314002803491921384045}{10797726728224791373076369953352113472} a^{2} - \frac{1284412476300192839460999987799514863}{2699431682056197843269092488338028368} a - \frac{73606248074983378567096864735715707}{337428960257024730408636561042253546}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35534230107200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3240 |
| The 24 conjugacy class representatives for [3^4:2]F(5) |
| Character table for [3^4:2]F(5) is not computed |
Intermediate fields
| 5.5.6889792.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.12.10.5 | $x^{12} + 56 x^{6} + 1323$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |