Normalized defining polynomial
\( x^{15} - x^{14} - 138 x^{13} + 199 x^{12} + 6929 x^{11} - 12063 x^{10} - 153918 x^{9} + 286450 x^{8} + 1482626 x^{7} - 2537498 x^{6} - 5507898 x^{5} + 6506003 x^{4} + 7481934 x^{3} - 6753006 x^{2} - 3196046 x + 2524579 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(104351149323786133540261771563529=13^{10}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $136.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(403=13\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{403}(1,·)$, $\chi_{403}(386,·)$, $\chi_{403}(100,·)$, $\chi_{403}(133,·)$, $\chi_{403}(326,·)$, $\chi_{403}(289,·)$, $\chi_{403}(328,·)$, $\chi_{403}(66,·)$, $\chi_{403}(237,·)$, $\chi_{403}(360,·)$, $\chi_{403}(87,·)$, $\chi_{403}(152,·)$, $\chi_{403}(315,·)$, $\chi_{403}(157,·)$, $\chi_{403}(287,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{37} a^{12} - \frac{16}{37} a^{11} + \frac{5}{37} a^{10} - \frac{6}{37} a^{9} - \frac{2}{37} a^{8} + \frac{8}{37} a^{7} - \frac{7}{37} a^{6} - \frac{12}{37} a^{5} - \frac{18}{37} a^{4} - \frac{2}{37} a^{3} + \frac{15}{37} a^{2} + \frac{13}{37} a - \frac{9}{37}$, $\frac{1}{37} a^{13} + \frac{8}{37} a^{11} + \frac{13}{37} a^{9} + \frac{13}{37} a^{8} + \frac{10}{37} a^{7} - \frac{13}{37} a^{6} + \frac{12}{37} a^{5} + \frac{6}{37} a^{4} - \frac{17}{37} a^{3} - \frac{6}{37} a^{2} + \frac{14}{37} a + \frac{4}{37}$, $\frac{1}{575426974203435043179963737315187900427} a^{14} - \frac{1975699858174517697284951354858021431}{575426974203435043179963737315187900427} a^{13} - \frac{4613203882761518505566750456742490831}{575426974203435043179963737315187900427} a^{12} - \frac{78055242843074268264332967174845200035}{575426974203435043179963737315187900427} a^{11} - \frac{136521417249098375440937057986894361636}{575426974203435043179963737315187900427} a^{10} + \frac{280590508209834387740298777041371656659}{575426974203435043179963737315187900427} a^{9} + \frac{210104848802741872815943325197479599362}{575426974203435043179963737315187900427} a^{8} - \frac{138332023517786494670239854319709760125}{575426974203435043179963737315187900427} a^{7} + \frac{4664317944846915558894450018844251847}{575426974203435043179963737315187900427} a^{6} + \frac{161723153537030086048343061930938027116}{575426974203435043179963737315187900427} a^{5} - \frac{70209910385205430352418513080088714545}{575426974203435043179963737315187900427} a^{4} + \frac{201609151076921675224316123616800221747}{575426974203435043179963737315187900427} a^{3} + \frac{284667698355164319211857346933232187486}{575426974203435043179963737315187900427} a^{2} - \frac{223799651433427393623440169062389440038}{575426974203435043179963737315187900427} a + \frac{11408879904966987161455314923581154155}{575426974203435043179963737315187900427}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40012888441.73841 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.162409.2, 5.5.923521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{5}$ | $15$ | $15$ | R | $15$ | $15$ | $15$ | $15$ | R | ${\href{/LocalNumberField/37.1.0.1}{1} }^{15}$ | $15$ | $15$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.15.10.2 | $x^{15} - 57122 x^{3} + 2227758$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |
| $31$ | 31.15.14.1 | $x^{15} - 31$ | $15$ | $1$ | $14$ | $C_{15}$ | $[\ ]_{15}$ |