Properties

Label 15.15.1043511493...3529.2
Degree $15$
Signature $[15, 0]$
Discriminant $13^{10}\cdot 31^{14}$
Root discriminant $136.32$
Ramified primes $13, 31$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group $C_{15}$ (as 15T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2524579, -3196046, -6753006, 7481934, 6506003, -5507898, -2537498, 1482626, 286450, -153918, -12063, 6929, 199, -138, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - x^14 - 138*x^13 + 199*x^12 + 6929*x^11 - 12063*x^10 - 153918*x^9 + 286450*x^8 + 1482626*x^7 - 2537498*x^6 - 5507898*x^5 + 6506003*x^4 + 7481934*x^3 - 6753006*x^2 - 3196046*x + 2524579)
 
gp: K = bnfinit(x^15 - x^14 - 138*x^13 + 199*x^12 + 6929*x^11 - 12063*x^10 - 153918*x^9 + 286450*x^8 + 1482626*x^7 - 2537498*x^6 - 5507898*x^5 + 6506003*x^4 + 7481934*x^3 - 6753006*x^2 - 3196046*x + 2524579, 1)
 

Normalized defining polynomial

\( x^{15} - x^{14} - 138 x^{13} + 199 x^{12} + 6929 x^{11} - 12063 x^{10} - 153918 x^{9} + 286450 x^{8} + 1482626 x^{7} - 2537498 x^{6} - 5507898 x^{5} + 6506003 x^{4} + 7481934 x^{3} - 6753006 x^{2} - 3196046 x + 2524579 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[15, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(104351149323786133540261771563529=13^{10}\cdot 31^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $136.32$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(403=13\cdot 31\)
Dirichlet character group:    $\lbrace$$\chi_{403}(1,·)$, $\chi_{403}(386,·)$, $\chi_{403}(100,·)$, $\chi_{403}(133,·)$, $\chi_{403}(326,·)$, $\chi_{403}(289,·)$, $\chi_{403}(328,·)$, $\chi_{403}(66,·)$, $\chi_{403}(237,·)$, $\chi_{403}(360,·)$, $\chi_{403}(87,·)$, $\chi_{403}(152,·)$, $\chi_{403}(315,·)$, $\chi_{403}(157,·)$, $\chi_{403}(287,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{37} a^{12} - \frac{16}{37} a^{11} + \frac{5}{37} a^{10} - \frac{6}{37} a^{9} - \frac{2}{37} a^{8} + \frac{8}{37} a^{7} - \frac{7}{37} a^{6} - \frac{12}{37} a^{5} - \frac{18}{37} a^{4} - \frac{2}{37} a^{3} + \frac{15}{37} a^{2} + \frac{13}{37} a - \frac{9}{37}$, $\frac{1}{37} a^{13} + \frac{8}{37} a^{11} + \frac{13}{37} a^{9} + \frac{13}{37} a^{8} + \frac{10}{37} a^{7} - \frac{13}{37} a^{6} + \frac{12}{37} a^{5} + \frac{6}{37} a^{4} - \frac{17}{37} a^{3} - \frac{6}{37} a^{2} + \frac{14}{37} a + \frac{4}{37}$, $\frac{1}{575426974203435043179963737315187900427} a^{14} - \frac{1975699858174517697284951354858021431}{575426974203435043179963737315187900427} a^{13} - \frac{4613203882761518505566750456742490831}{575426974203435043179963737315187900427} a^{12} - \frac{78055242843074268264332967174845200035}{575426974203435043179963737315187900427} a^{11} - \frac{136521417249098375440937057986894361636}{575426974203435043179963737315187900427} a^{10} + \frac{280590508209834387740298777041371656659}{575426974203435043179963737315187900427} a^{9} + \frac{210104848802741872815943325197479599362}{575426974203435043179963737315187900427} a^{8} - \frac{138332023517786494670239854319709760125}{575426974203435043179963737315187900427} a^{7} + \frac{4664317944846915558894450018844251847}{575426974203435043179963737315187900427} a^{6} + \frac{161723153537030086048343061930938027116}{575426974203435043179963737315187900427} a^{5} - \frac{70209910385205430352418513080088714545}{575426974203435043179963737315187900427} a^{4} + \frac{201609151076921675224316123616800221747}{575426974203435043179963737315187900427} a^{3} + \frac{284667698355164319211857346933232187486}{575426974203435043179963737315187900427} a^{2} - \frac{223799651433427393623440169062389440038}{575426974203435043179963737315187900427} a + \frac{11408879904966987161455314923581154155}{575426974203435043179963737315187900427}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 40012888441.73841 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{15}$ (as 15T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 15
The 15 conjugacy class representatives for $C_{15}$
Character table for $C_{15}$

Intermediate fields

3.3.162409.2, 5.5.923521.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $15$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{5}$ $15$ $15$ R $15$ $15$ $15$ $15$ R ${\href{/LocalNumberField/37.1.0.1}{1} }^{15}$ $15$ $15$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ $15$ $15$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.15.10.2$x^{15} - 57122 x^{3} + 2227758$$3$$5$$10$$C_{15}$$[\ ]_{3}^{5}$
$31$31.15.14.1$x^{15} - 31$$15$$1$$14$$C_{15}$$[\ ]_{15}$