Normalized defining polynomial
\( x^{15} - x^{14} - 138 x^{13} + 199 x^{12} + 6929 x^{11} - 12063 x^{10} - 157948 x^{9} + 284032 x^{8} + 1754651 x^{7} - 2937677 x^{6} - 9064776 x^{5} + 12870179 x^{4} + 16617944 x^{3} - 18839782 x^{2} + 3647700 x - 183581 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(104351149323786133540261771563529=13^{10}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $136.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(403=13\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{403}(224,·)$, $\chi_{403}(1,·)$, $\chi_{403}(66,·)$, $\chi_{403}(165,·)$, $\chi_{403}(326,·)$, $\chi_{403}(81,·)$, $\chi_{403}(9,·)$, $\chi_{403}(107,·)$, $\chi_{403}(204,·)$, $\chi_{403}(113,·)$, $\chi_{403}(211,·)$, $\chi_{403}(276,·)$, $\chi_{403}(287,·)$, $\chi_{403}(157,·)$, $\chi_{403}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{67} a^{13} - \frac{12}{67} a^{12} + \frac{2}{67} a^{11} + \frac{14}{67} a^{10} + \frac{24}{67} a^{9} - \frac{21}{67} a^{8} - \frac{8}{67} a^{7} + \frac{6}{67} a^{6} - \frac{8}{67} a^{5} + \frac{7}{67} a^{4} - \frac{18}{67} a^{3} + \frac{1}{67} a^{2} - \frac{20}{67} a - \frac{25}{67}$, $\frac{1}{2191900006551318931632581428333912221197743} a^{14} + \frac{769358562879041103000874733855696902293}{2191900006551318931632581428333912221197743} a^{13} + \frac{948586074998002088563246417480986727876631}{2191900006551318931632581428333912221197743} a^{12} + \frac{1011454260984341441157152132868768549225839}{2191900006551318931632581428333912221197743} a^{11} - \frac{495237693500142474653798013029792658330915}{2191900006551318931632581428333912221197743} a^{10} - \frac{21674609127542680470227305366185631505302}{2191900006551318931632581428333912221197743} a^{9} + \frac{915907098518281986594526631384191212459658}{2191900006551318931632581428333912221197743} a^{8} + \frac{211703503729956157229173043168345329706608}{2191900006551318931632581428333912221197743} a^{7} + \frac{924510314449189869277289471762721794010938}{2191900006551318931632581428333912221197743} a^{6} - \frac{559295351453456040404749127822876725347010}{2191900006551318931632581428333912221197743} a^{5} + \frac{472661936875499064038195577311932363092851}{2191900006551318931632581428333912221197743} a^{4} + \frac{417017141529902678845562660345330728228594}{2191900006551318931632581428333912221197743} a^{3} + \frac{662019180693765819668066216337091097054202}{2191900006551318931632581428333912221197743} a^{2} + \frac{967810189790380167119261932716916354137259}{2191900006551318931632581428333912221197743} a - \frac{804910609293605501884204662388784217482544}{2191900006551318931632581428333912221197743}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35183529541.906876 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| 3.3.162409.1, 5.5.923521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | $15$ | $15$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.15.10.3 | $x^{15} - 676 x^{9} + 114244 x^{3} - 13366548$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |
| $31$ | 31.15.14.1 | $x^{15} - 31$ | $15$ | $1$ | $14$ | $C_{15}$ | $[\ ]_{15}$ |