Normalized defining polynomial
\( x^{15} - 792 x^{13} - 3168 x^{12} + 243000 x^{11} + 1944000 x^{10} - 32510241 x^{9} - 436778892 x^{8} + 928289646 x^{7} + 40476996000 x^{6} + 179367970671 x^{5} - 864514862676 x^{4} - 11710445044896 x^{3} - 49581395118720 x^{2} - 99162790237440 x - 79330232189952 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10006637005875926619966658236409866397329=3^{20}\cdot 251^{2}\cdot 401^{7}\cdot 5227^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $464.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 251, 401, 5227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{9} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{27} a^{5}$, $\frac{1}{162} a^{6} - \frac{1}{18} a^{3} - \frac{1}{2} a$, $\frac{1}{162} a^{7} - \frac{1}{18} a^{4} - \frac{1}{6} a^{2}$, $\frac{1}{486} a^{8} - \frac{1}{54} a^{5} - \frac{1}{18} a^{3}$, $\frac{1}{1458} a^{9} - \frac{1}{18} a^{4} - \frac{1}{18} a^{3} - \frac{1}{2} a$, $\frac{1}{1458} a^{10} - \frac{1}{54} a^{5} - \frac{1}{18} a^{4} - \frac{1}{6} a^{2}$, $\frac{1}{139968} a^{11} - \frac{1}{2916} a^{10} - \frac{1}{5832} a^{9} + \frac{1}{648} a^{7} - \frac{17}{1728} a^{5} + \frac{1}{48} a^{4} - \frac{1}{96} a^{3} + \frac{13}{64} a - \frac{3}{16}$, $\frac{1}{12657586176} a^{12} - \frac{7}{2239488} a^{11} + \frac{3545}{19533312} a^{10} + \frac{281}{2441664} a^{9} - \frac{7481}{19533312} a^{8} - \frac{703}{542592} a^{7} + \frac{3191}{17362944} a^{6} + \frac{235}{45216} a^{5} - \frac{30131}{2893824} a^{4} - \frac{30931}{723456} a^{3} - \frac{308273}{1929216} a^{2} - \frac{70625}{241152} a + \frac{45935}{120576}$, $\frac{1}{810085515264} a^{13} - \frac{1}{101260689408} a^{12} + \frac{39755}{11251187712} a^{11} - \frac{21311}{937598976} a^{10} - \frac{734539}{3750395904} a^{9} - \frac{109}{124416} a^{8} + \frac{804605}{370409472} a^{7} - \frac{30979}{92602368} a^{6} - \frac{914099}{185204736} a^{5} - \frac{468659}{23150592} a^{4} + \frac{20120845}{370409472} a^{3} + \frac{1276781}{30867456} a^{2} - \frac{3157907}{7716864} a + \frac{161999}{1929216}$, $\frac{1}{155536418930688} a^{14} + \frac{5}{12961368244224} a^{13} + \frac{13}{720076013568} a^{12} + \frac{25063}{30003167232} a^{11} - \frac{8547689}{240025337856} a^{10} + \frac{4626887}{60006334464} a^{9} - \frac{151099675}{640067567616} a^{8} - \frac{26239259}{8889827328} a^{7} - \frac{101147873}{106677927936} a^{6} + \frac{122148023}{8889827328} a^{5} + \frac{998644079}{23706206208} a^{4} - \frac{61753853}{1481637888} a^{3} + \frac{76365397}{740818944} a^{2} + \frac{14328577}{30867456} a - \frac{4537465}{10289152}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2223174963210000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2430 |
| The 45 conjugacy class representatives for 1/2[3^5:2]D(5) |
| Character table for 1/2[3^5:2]D(5) is not computed |
Intermediate fields
| 5.5.160801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | R | $15$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.4 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $[2]^{2}$ |
| 3.6.8.10 | $x^{6} + 6 x^{5} + 36$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| 3.6.8.4 | $x^{6} + 18 x^{2} + 63$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| 251 | Data not computed | ||||||
| 401 | Data not computed | ||||||
| 5227 | Data not computed | ||||||