Normalized defining polynomial
\( x^{15} - 1628 x^{13} - 5920 x^{12} + 1105179 x^{11} + 7903120 x^{10} - 388843381 x^{9} - 4223348520 x^{8} + 69563456700 x^{7} + 1121721226000 x^{6} - 4146108150000 x^{5} - 145380612000000 x^{4} - 422827275000000 x^{3} + 6657280500000000 x^{2} + 53977950000000000 x + 119951000000000000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[13, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-77174683442309589098663731731426228356468718082330624000=-\,2^{15}\cdot 5^{3}\cdot 7^{10}\cdot 13^{4}\cdot 1973^{2}\cdot 9227^{4}\cdot 9097717^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $5319.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 13, 1973, 9227, 9097717$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{10} a^{7} + \frac{1}{5} a^{5} - \frac{1}{10} a^{3} - \frac{1}{10} a$, $\frac{1}{100} a^{8} - \frac{7}{25} a^{6} - \frac{1}{5} a^{5} - \frac{21}{100} a^{4} + \frac{1}{5} a^{3} + \frac{19}{100} a^{2} - \frac{1}{5} a$, $\frac{1}{100000} a^{9} - \frac{7}{2500} a^{8} + \frac{43}{25000} a^{7} + \frac{212}{625} a^{6} - \frac{17621}{100000} a^{5} + \frac{9}{20} a^{4} + \frac{25219}{100000} a^{3} - \frac{623}{1250} a^{2} - \frac{27}{200} a + \frac{1}{10}$, $\frac{1}{25000000} a^{10} + \frac{11}{2500000} a^{9} - \frac{7257}{6250000} a^{8} - \frac{99}{25000} a^{7} + \frac{4771179}{25000000} a^{6} + \frac{477281}{2500000} a^{5} - \frac{2404781}{25000000} a^{4} + \frac{878557}{2500000} a^{3} + \frac{101689}{250000} a^{2} - \frac{951}{5000} a - \frac{31}{250}$, $\frac{1}{1000000000} a^{11} - \frac{1}{50000000} a^{10} + \frac{209}{125000000} a^{9} + \frac{13433}{12500000} a^{8} + \frac{25381179}{1000000000} a^{7} - \frac{9704023}{50000000} a^{6} + \frac{234184919}{1000000000} a^{5} + \frac{1614071}{10000000} a^{4} + \frac{264499}{5000000} a^{3} + \frac{46311}{125000} a^{2} + \frac{8151}{20000} a + \frac{353}{1000}$, $\frac{1}{50000000000} a^{12} + \frac{109}{6250000000} a^{10} - \frac{449}{625000000} a^{9} - \frac{233514821}{50000000000} a^{8} - \frac{22950711}{625000000} a^{7} - \frac{8067895881}{50000000000} a^{6} + \frac{332977037}{1250000000} a^{5} + \frac{41714771}{250000000} a^{4} - \frac{456661}{12500000} a^{3} - \frac{12661}{40000} a^{2} + \frac{2157}{6250} a + \frac{173}{500}$, $\frac{1}{2500000000000000} a^{13} - \frac{13}{2500000000000} a^{12} - \frac{26907}{625000000000000} a^{11} + \frac{843}{976562500000} a^{10} + \frac{3486633179}{2500000000000000} a^{9} - \frac{41607497597}{62500000000000} a^{8} + \frac{79957993622619}{2500000000000000} a^{7} + \frac{727179288191}{1953125000000} a^{6} - \frac{7408815433973}{25000000000000} a^{5} + \frac{488611893123}{1250000000000} a^{4} - \frac{15866029847}{50000000000} a^{3} + \frac{171534431}{1250000000} a^{2} - \frac{49947767}{100000000} a + \frac{1105867}{5000000}$, $\frac{1}{3200000000000000000} a^{14} - \frac{31}{160000000000000000} a^{13} + \frac{7238093}{800000000000000000} a^{12} + \frac{13059043}{40000000000000000} a^{11} - \frac{42616336421}{3200000000000000000} a^{10} - \frac{430679057393}{160000000000000000} a^{9} - \frac{13945272806411781}{3200000000000000000} a^{8} + \frac{116342434619077}{32000000000000000} a^{7} + \frac{7303964919564651}{32000000000000000} a^{6} - \frac{13152408738979}{100000000000000} a^{5} + \frac{60830350373313}{320000000000000} a^{4} - \frac{1482197361431}{3200000000000} a^{3} - \frac{216618916523}{640000000000} a^{2} + \frac{1248370297}{3200000000} a - \frac{132470827}{320000000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 139335852303000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5184000 |
| The 133 conjugacy class representatives for [S(5)^3]3=S(5)wr3 are not computed |
| Character table for [S(5)^3]3=S(5)wr3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | $15$ | $15$ | ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.9.8 | $x^{6} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.5.4.1 | $x^{5} - 13$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 13.5.0.1 | $x^{5} - 2 x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 1973 | Data not computed | ||||||
| 9227 | Data not computed | ||||||
| 9097717 | Data not computed | ||||||