Normalized defining polynomial
\( x^{15} - 6 x^{14} - 609 x^{13} + 1918 x^{12} + 109824 x^{11} - 351336 x^{10} - 9177561 x^{9} + 28595400 x^{8} + 413865150 x^{7} - 702248000 x^{6} - 11065807500 x^{5} - 14833200000 x^{4} + 170839125000 x^{3} + 688080000000 x^{2} - 1015200000000 x - 3008000000000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(987698322701449818222428064455485979759874048000000=2^{18}\cdot 3^{25}\cdot 5^{6}\cdot 7^{2}\cdot 11^{5}\cdot 47^{4}\cdot 1153^{2}\cdot 74561^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2509.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 11, 47, 1153, 74561$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} + \frac{2}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{5} a^{6} + \frac{2}{5} a^{4} + \frac{1}{5} a^{2}$, $\frac{1}{25} a^{7} + \frac{2}{25} a^{6} + \frac{2}{25} a^{5} - \frac{6}{25} a^{4} - \frac{9}{25} a^{3} + \frac{12}{25} a^{2} + \frac{1}{5} a$, $\frac{1}{50} a^{8} + \frac{3}{50} a^{6} - \frac{6}{25} a^{4} + \frac{11}{50} a^{2}$, $\frac{1}{500} a^{9} + \frac{1}{125} a^{8} - \frac{9}{500} a^{7} + \frac{12}{125} a^{6} + \frac{6}{125} a^{5} + \frac{61}{125} a^{4} + \frac{39}{500} a^{3} + \frac{11}{50} a^{2} + \frac{3}{10} a$, $\frac{1}{5000} a^{10} + \frac{1}{1250} a^{9} + \frac{31}{5000} a^{8} + \frac{7}{1250} a^{7} + \frac{1}{1250} a^{6} + \frac{38}{625} a^{5} - \frac{1021}{5000} a^{4} + \frac{199}{500} a^{3} + \frac{1}{20} a^{2} - \frac{1}{10} a$, $\frac{1}{250000} a^{11} + \frac{1}{62500} a^{10} - \frac{19}{250000} a^{9} - \frac{259}{31250} a^{8} - \frac{173}{125000} a^{7} + \frac{4901}{62500} a^{6} - \frac{4821}{250000} a^{5} - \frac{9461}{25000} a^{4} + \frac{207}{500} a^{3} - \frac{9}{100} a^{2} + \frac{39}{100} a + \frac{2}{5}$, $\frac{1}{2500000} a^{12} + \frac{1}{625000} a^{11} - \frac{19}{2500000} a^{10} + \frac{107}{625000} a^{9} - \frac{2673}{1250000} a^{8} - \frac{1028}{78125} a^{7} - \frac{239821}{2500000} a^{6} - \frac{19461}{250000} a^{5} - \frac{353}{5000} a^{4} + \frac{229}{500} a^{3} - \frac{361}{1000} a^{2} - \frac{21}{100} a$, $\frac{1}{50000000} a^{13} - \frac{3}{25000000} a^{12} - \frac{9}{50000000} a^{11} - \frac{841}{25000000} a^{10} - \frac{5697}{6250000} a^{9} - \frac{57567}{6250000} a^{8} + \frac{326839}{50000000} a^{7} - \frac{22131}{250000} a^{6} - \frac{2629}{1000000} a^{5} - \frac{71}{6250} a^{4} + \frac{4989}{20000} a^{3} + \frac{1}{25} a^{2} + \frac{101}{400} a - \frac{2}{5}$, $\frac{1}{16211450382887807519788166244912603604000000000} a^{14} + \frac{29162309846631119397691025532718716517}{8105725191443903759894083122456301802000000000} a^{13} - \frac{636508791890404687538153402959430371649}{16211450382887807519788166244912603604000000000} a^{12} + \frac{3360629080377902574455806130754190006679}{8105725191443903759894083122456301802000000000} a^{11} - \frac{20282755438601795489026518106951732978133}{506607824465243984993380195153518862625000000} a^{10} - \frac{524444908608752330554726014848529166777597}{2026431297860975939973520780614075450500000000} a^{9} + \frac{159747863632396232032147340208716755865381799}{16211450382887807519788166244912603604000000000} a^{8} + \frac{7731251587569948199218690825913297269995619}{405286259572195187994704156122815090100000000} a^{7} + \frac{1219097950075614839238191937050048886400119}{324229007657756150395763324898252072080000000} a^{6} + \frac{218606255487846607335808446602022104912593}{4052862595721951879947041561228150901000000} a^{5} + \frac{2444744693200431004684647240596463158945517}{6484580153155123007915266497965041441600000} a^{4} + \frac{24162981538377855636092826375704950305127}{81057251914439037598940831224563018020000} a^{3} - \frac{13355602970105782499390261860004570813831}{129691603063102460158305329959300828832000} a^{2} - \frac{465729021058869341244284333786631348427}{1621145038288780751978816624491260360400} a - \frac{6126134742083775731165050233458882994}{20264312978609759399735207806140754505}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 588721260702000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5184000 |
| The 79 conjugacy class representatives for [1/2.S(5)^3]S(3) are not computed |
| Character table for [1/2.S(5)^3]S(3) is not computed |
Intermediate fields
| 3.3.2673.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | R | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.2 | $x^{6} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 3 | Data not computed | ||||||
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.8.0.1 | $x^{8} - x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 47 | Data not computed | ||||||
| 1153 | Data not computed | ||||||
| 74561 | Data not computed | ||||||