Normalized defining polynomial
\( x^{15} - 1656 x^{13} - 13248 x^{12} + 756052 x^{11} + 12494272 x^{10} - 34227000 x^{9} - 2397580992 x^{8} - 25615490336 x^{7} - 139353010816 x^{6} - 449403866240 x^{5} - 906009477120 x^{4} - 1155152550400 x^{3} - 906581452800 x^{2} - 400382976000 x - 76263424000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(978816588753356030957478208479888197420687527936000000=2^{18}\cdot 5^{6}\cdot 7^{10}\cdot 13^{2}\cdot 43^{4}\cdot 433^{4}\cdot 631^{2}\cdot 323441^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3975.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 13, 43, 433, 631, 323441$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{20} a^{5} - \frac{1}{10} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{40} a^{6} - \frac{1}{20} a^{4} + \frac{1}{10} a^{3}$, $\frac{1}{80} a^{7} + \frac{1}{20} a^{4} - \frac{1}{20} a^{3} + \frac{1}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{800} a^{8} - \frac{1}{200} a^{6} + \frac{1}{100} a^{5} + \frac{21}{200} a^{4} + \frac{9}{50} a^{3} + \frac{7}{100} a^{2} - \frac{1}{5}$, $\frac{1}{3200} a^{9} + \frac{1}{200} a^{7} - \frac{1}{100} a^{6} + \frac{1}{800} a^{5} - \frac{3}{100} a^{4} - \frac{3}{400} a^{3} + \frac{1}{5} a^{2} - \frac{1}{20} a$, $\frac{1}{83200} a^{10} + \frac{1}{5200} a^{8} + \frac{1}{650} a^{7} + \frac{241}{20800} a^{6} - \frac{7}{650} a^{5} - \frac{363}{10400} a^{4} - \frac{43}{260} a^{3} - \frac{33}{520} a^{2} + \frac{7}{26} a + \frac{1}{13}$, $\frac{1}{1664000} a^{11} - \frac{9}{416000} a^{9} - \frac{9}{52000} a^{8} - \frac{2047}{416000} a^{7} - \frac{27}{26000} a^{6} + \frac{31}{1664} a^{5} + \frac{2827}{26000} a^{4} + \frac{691}{26000} a^{3} + \frac{1683}{13000} a^{2} + \frac{153}{2600} a + \frac{7}{50}$, $\frac{1}{16640000} a^{12} - \frac{9}{4160000} a^{10} + \frac{47}{1040000} a^{9} + \frac{33}{4160000} a^{8} + \frac{883}{260000} a^{7} - \frac{2969}{416000} a^{6} + \frac{333}{65000} a^{5} + \frac{2251}{260000} a^{4} - \frac{863}{32500} a^{3} - \frac{6399}{26000} a^{2} + \frac{1}{250} a - \frac{2}{25}$, $\frac{1}{66560000000} a^{13} - \frac{31}{1664000000} a^{12} + \frac{1263}{8320000000} a^{11} + \frac{2339}{520000000} a^{10} - \frac{1494347}{16640000000} a^{9} - \frac{544809}{2080000000} a^{8} + \frac{5437501}{1664000000} a^{7} + \frac{3153401}{520000000} a^{6} - \frac{6310333}{2080000000} a^{5} - \frac{17924007}{520000000} a^{4} + \frac{15935431}{104000000} a^{3} - \frac{2920759}{13000000} a^{2} + \frac{1108319}{5200000} a + \frac{95697}{1300000}$, $\frac{1}{8519680000000} a^{14} - \frac{11}{2129920000000} a^{13} + \frac{14883}{1064960000000} a^{12} - \frac{63007}{266240000000} a^{11} - \frac{2704139}{2129920000000} a^{10} - \frac{18275371}{532480000000} a^{9} - \frac{586510751}{1064960000000} a^{8} - \frac{905450401}{266240000000} a^{7} - \frac{250073073}{20480000000} a^{6} + \frac{162029213}{33280000000} a^{5} + \frac{943260783}{66560000000} a^{4} - \frac{794206849}{3328000000} a^{3} + \frac{21984067}{3328000000} a^{2} - \frac{2503661}{83200000} a - \frac{384597}{41600000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12988737439300000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2592000 |
| The 71 conjugacy class representatives for [1/2.S(5)^3]3 are not computed |
| Character table for [1/2.S(5)^3]3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | $15$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.4 | $x^{6} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 43 | Data not computed | ||||||
| 433 | Data not computed | ||||||
| 631 | Data not computed | ||||||
| 323441 | Data not computed | ||||||