Normalized defining polynomial
\( x^{15} + 324 x^{13} - 2808 x^{12} + 15414 x^{11} + 8208 x^{10} - 715554 x^{9} + 204120 x^{8} + 8908788 x^{7} + 4954824 x^{6} - 32517240 x^{5} - 32825520 x^{4} + 29720600 x^{3} + 47174400 x^{2} + 15288000 x + 1456000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(903220055915539404331852313843496708734976000000=2^{24}\cdot 3^{15}\cdot 5^{6}\cdot 7^{9}\cdot 13^{4}\cdot 456446131^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1574.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 13, 456446131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{20} a^{11} - \frac{1}{20} a^{9} + \frac{1}{10} a^{8} + \frac{1}{5} a^{7} - \frac{1}{10} a^{6} - \frac{1}{5} a^{5} - \frac{1}{10} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{40} a^{12} + \frac{1}{10} a^{10} + \frac{1}{20} a^{9} - \frac{3}{20} a^{8} + \frac{1}{5} a^{7} + \frac{3}{20} a^{6} - \frac{1}{2} a^{5} - \frac{3}{10} a^{4} + \frac{1}{10} a^{3}$, $\frac{1}{400} a^{13} + \frac{1}{100} a^{11} - \frac{1}{50} a^{10} + \frac{17}{200} a^{9} - \frac{2}{25} a^{8} - \frac{17}{200} a^{7} - \frac{1}{10} a^{6} - \frac{33}{100} a^{5} + \frac{3}{50} a^{4} - \frac{1}{2} a$, $\frac{1}{41528291911815305038478803115820795630719200} a^{14} + \frac{477314095000349559688137606100421432123}{5191036488976913129809850389477599453839900} a^{13} + \frac{26131455776175410808788667297529135116403}{5191036488976913129809850389477599453839900} a^{12} - \frac{15276421165484056357269251852885044263751}{1297759122244228282452462597369399863459975} a^{11} - \frac{2293556830590357795714010440076585955449129}{20764145955907652519239401557910397815359600} a^{10} - \frac{21209759058924522228592891815064793354568}{1297759122244228282452462597369399863459975} a^{9} - \frac{1862612650275417318620172333625523357051581}{20764145955907652519239401557910397815359600} a^{8} + \frac{19357430611475878036759872695553697670053}{5191036488976913129809850389477599453839900} a^{7} - \frac{1821643257098129271444829535130161637917313}{10382072977953826259619700778955198907679800} a^{6} + \frac{7412979326640311168088768230164908269547}{5191036488976913129809850389477599453839900} a^{5} - \frac{505185592590849163309871372158153253446103}{5191036488976913129809850389477599453839900} a^{4} + \frac{19021257117939858962715274611987439248017}{103820729779538262596197007789551989076798} a^{3} + \frac{371152150547832843104614899511337974548999}{1038207297795382625961970077895519890767980} a^{2} - \frac{10673231045012476674474642913528346064042}{51910364889769131298098503894775994538399} a - \frac{19034994466649961779452185306044104162266}{51910364889769131298098503894775994538399}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48708287178600000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5184000 |
| The 79 conjugacy class representatives for [1/2.S(5)^3]S(3) are not computed |
| Character table for [1/2.S(5)^3]S(3) is not computed |
Intermediate fields
| 3.3.756.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | $15$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.5.0.1}{5} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | $15$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.11.16 | $x^{6} + 2 x^{2} + 10$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
| 2.6.11.15 | $x^{6} + 2 x^{4} + 2 x^{2} + 10$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.10.9.2 | $x^{10} + 14$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.5.4.1 | $x^{5} - 13$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 456446131 | Data not computed | ||||||