Properties

Label 15.11.7212287539...8896.1
Degree $15$
Signature $[11, 2]$
Discriminant $2^{12}\cdot 7^{10}\cdot 13^{3}\cdot 29^{2}\cdot 97^{3}\cdot 192263^{2}$
Root discriminant $210.80$
Ramified primes $2, 7, 13, 29, 97, 192263$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T75

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-10525969, -11026275, 12241538, 36074673, 35754551, 16513183, 1113480, -2713681, -1372760, -207932, 34020, 12616, 121, -201, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 4*x^14 - 201*x^13 + 121*x^12 + 12616*x^11 + 34020*x^10 - 207932*x^9 - 1372760*x^8 - 2713681*x^7 + 1113480*x^6 + 16513183*x^5 + 35754551*x^4 + 36074673*x^3 + 12241538*x^2 - 11026275*x - 10525969)
 
gp: K = bnfinit(x^15 - 4*x^14 - 201*x^13 + 121*x^12 + 12616*x^11 + 34020*x^10 - 207932*x^9 - 1372760*x^8 - 2713681*x^7 + 1113480*x^6 + 16513183*x^5 + 35754551*x^4 + 36074673*x^3 + 12241538*x^2 - 11026275*x - 10525969, 1)
 

Normalized defining polynomial

\( x^{15} - 4 x^{14} - 201 x^{13} + 121 x^{12} + 12616 x^{11} + 34020 x^{10} - 207932 x^{9} - 1372760 x^{8} - 2713681 x^{7} + 1113480 x^{6} + 16513183 x^{5} + 35754551 x^{4} + 36074673 x^{3} + 12241538 x^{2} - 11026275 x - 10525969 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[11, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(72122875390646654351987363783888896=2^{12}\cdot 7^{10}\cdot 13^{3}\cdot 29^{2}\cdot 97^{3}\cdot 192263^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $210.80$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 13, 29, 97, 192263$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{811120214645992638942969160347414033075390690116} a^{14} - \frac{73204839189488908066326701470007471438951921997}{811120214645992638942969160347414033075390690116} a^{13} + \frac{4661957038451538825139498690943298849868376567}{62393862665076356841766858488262617928876206932} a^{12} + \frac{20050424876897503324797415473499972467512246437}{405560107322996319471484580173707016537695345058} a^{11} + \frac{96758433579508046800540844141300864482648826201}{405560107322996319471484580173707016537695345058} a^{10} + \frac{119508236054019661442751530949451862973232595}{31196931332538178420883429244131308964438103466} a^{9} - \frac{32214275974712612113976366466844232040412699751}{202780053661498159735742290086853508268847672529} a^{8} - \frac{57052893832613937843043666313856849600657395667}{405560107322996319471484580173707016537695345058} a^{7} + \frac{10097962567612253589854050535896052437901745505}{811120214645992638942969160347414033075390690116} a^{6} - \frac{315414357380989455464958663352571606184479601155}{811120214645992638942969160347414033075390690116} a^{5} - \frac{88548370447265068916558982360966842713566899163}{811120214645992638942969160347414033075390690116} a^{4} + \frac{34341211943948711391030966484474051048558222125}{202780053661498159735742290086853508268847672529} a^{3} + \frac{105716174936960845827518853047780105553452198657}{811120214645992638942969160347414033075390690116} a^{2} + \frac{97837177595626159819388471000812242214938120701}{811120214645992638942969160347414033075390690116} a - \frac{25302755086543656182290926161470552142062696359}{811120214645992638942969160347414033075390690116}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1804860014880 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T75:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 24000
The 55 conjugacy class representatives for [F(5)^3]3=F(5)wr3 are not computed
Character table for [F(5)^3]3=F(5)wr3 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 30 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ R ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ R ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{5}$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ R ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ $15$ $15$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.12.12.12$x^{12} + 66 x^{10} - 93 x^{8} - 68 x^{6} - 41 x^{4} + 66 x^{2} - 123$$2$$6$$12$12T29$[2, 2, 2]^{6}$
7Data not computed
$13$$\Q_{13}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{13}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{13}$$x + 2$$1$$1$$0$Trivial$[\ ]$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.3.1$x^{4} - 13$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
$29$$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.2.2$x^{4} - 29 x^{2} + 2523$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
97Data not computed
192263Data not computed