Properties

Label 15.11.4997116069...0000.1
Degree $15$
Signature $[11, 2]$
Discriminant $2^{18}\cdot 5^{7}\cdot 7^{2}\cdot 11^{5}\cdot 79^{5}\cdot 401^{4}\cdot 19713263^{2}$
Root discriminant $2796.28$
Ramified primes $2, 5, 7, 11, 79, 401, 19713263$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T100

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1642496000, 8623104000, 19525171200, 24878681600, 19512852480, 9692440960, 3048750464, 617654944, 97426368, 17068680, 2470432, 141712, -6768, -846, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 846*x^13 - 6768*x^12 + 141712*x^11 + 2470432*x^10 + 17068680*x^9 + 97426368*x^8 + 617654944*x^7 + 3048750464*x^6 + 9692440960*x^5 + 19512852480*x^4 + 24878681600*x^3 + 19525171200*x^2 + 8623104000*x + 1642496000)
 
gp: K = bnfinit(x^15 - 846*x^13 - 6768*x^12 + 141712*x^11 + 2470432*x^10 + 17068680*x^9 + 97426368*x^8 + 617654944*x^7 + 3048750464*x^6 + 9692440960*x^5 + 19512852480*x^4 + 24878681600*x^3 + 19525171200*x^2 + 8623104000*x + 1642496000, 1)
 

Normalized defining polynomial

\( x^{15} - 846 x^{13} - 6768 x^{12} + 141712 x^{11} + 2470432 x^{10} + 17068680 x^{9} + 97426368 x^{8} + 617654944 x^{7} + 3048750464 x^{6} + 9692440960 x^{5} + 19512852480 x^{4} + 24878681600 x^{3} + 19525171200 x^{2} + 8623104000 x + 1642496000 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[11, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4997116069370523770922817361794182094079365120000000=2^{18}\cdot 5^{7}\cdot 7^{2}\cdot 11^{5}\cdot 79^{5}\cdot 401^{4}\cdot 19713263^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $2796.28$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7, 11, 79, 401, 19713263$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{20} a^{5} - \frac{1}{10} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{40} a^{6} - \frac{1}{20} a^{4} + \frac{1}{10} a^{3}$, $\frac{1}{80} a^{7} - \frac{1}{40} a^{5} + \frac{1}{20} a^{4} - \frac{1}{2} a$, $\frac{1}{800} a^{8} + \frac{3}{400} a^{6} + \frac{1}{100} a^{5} + \frac{2}{25} a^{4} - \frac{1}{50} a^{3} + \frac{7}{100} a^{2} - \frac{1}{5}$, $\frac{1}{3200} a^{9} - \frac{7}{1600} a^{7} - \frac{1}{100} a^{6} + \frac{1}{50} a^{5} + \frac{3}{25} a^{4} - \frac{3}{400} a^{3} + \frac{1}{5} a^{2} + \frac{9}{20} a$, $\frac{1}{32000} a^{10} - \frac{1}{16000} a^{9} + \frac{9}{16000} a^{8} - \frac{41}{8000} a^{7} - \frac{1}{200} a^{6} - \frac{7}{500} a^{5} - \frac{3}{4000} a^{4} - \frac{449}{2000} a^{3} + \frac{201}{1000} a^{2} - \frac{9}{100} a + \frac{6}{25}$, $\frac{1}{128000} a^{11} + \frac{7}{64000} a^{9} - \frac{3}{8000} a^{8} - \frac{61}{16000} a^{7} - \frac{9}{4000} a^{6} + \frac{33}{3200} a^{5} + \frac{217}{2000} a^{4} - \frac{111}{500} a^{3} - \frac{87}{1000} a^{2} - \frac{97}{200} a + \frac{1}{50}$, $\frac{1}{1280000} a^{12} + \frac{7}{640000} a^{10} - \frac{3}{80000} a^{9} - \frac{61}{160000} a^{8} + \frac{191}{40000} a^{7} - \frac{287}{32000} a^{6} - \frac{83}{20000} a^{5} + \frac{589}{5000} a^{4} - \frac{387}{10000} a^{3} + \frac{263}{2000} a^{2} + \frac{101}{500} a + \frac{1}{5}$, $\frac{1}{5120000000} a^{13} - \frac{31}{128000000} a^{12} + \frac{5457}{2560000000} a^{11} - \frac{1829}{160000000} a^{10} + \frac{1167}{320000000} a^{9} + \frac{25021}{160000000} a^{8} - \frac{680227}{128000000} a^{7} + \frac{19223}{20000000} a^{6} + \frac{1606657}{160000000} a^{5} - \frac{3859947}{40000000} a^{4} - \frac{1738549}{8000000} a^{3} - \frac{116539}{1000000} a^{2} + \frac{39299}{400000} a - \frac{12563}{100000}$, $\frac{1}{3276800000000} a^{14} - \frac{3}{32768000000} a^{13} - \frac{37343}{1638400000000} a^{12} + \frac{1315079}{409600000000} a^{11} - \frac{1812353}{204800000000} a^{10} + \frac{3913511}{102400000000} a^{9} - \frac{3993687}{16384000000} a^{8} - \frac{266472941}{102400000000} a^{7} - \frac{1103366383}{102400000000} a^{6} + \frac{753941}{200000000} a^{5} + \frac{43003083}{1024000000} a^{4} - \frac{257464093}{1280000000} a^{3} + \frac{12651887}{51200000} a^{2} - \frac{2886649}{32000000} a - \frac{1454061}{3200000}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2643567297610000000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T100:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 5184000
The 79 conjugacy class representatives for [1/2.S(5)^3]S(3) are not computed
Character table for [1/2.S(5)^3]S(3) is not computed

Intermediate fields

3.3.4345.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 sibling: data not computed
Degree 30 siblings: data not computed
Degree 36 siblings: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ R R R ${\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ $15$ ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ $15$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.9.6$x^{6} + 4 x^{2} + 8$$2$$3$$9$$A_4\times C_2$$[2, 2, 3]^{3}$
2.6.9.6$x^{6} + 4 x^{2} + 8$$2$$3$$9$$A_4\times C_2$$[2, 2, 3]^{3}$
$5$$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.8.0.1$x^{8} - x + 3$$1$$8$$0$$C_8$$[\ ]^{8}$
$11$$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
11.3.0.1$x^{3} - x + 3$$1$$3$$0$$C_3$$[\ ]^{3}$
11.8.4.1$x^{8} + 484 x^{4} - 1331 x^{2} + 58564$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
79Data not computed
401Data not computed
19713263Data not computed