Normalized defining polynomial
\( x^{15} - 36 x^{13} - 288 x^{12} - 59528 x^{11} - 943808 x^{10} - 9568440 x^{9} - 110763072 x^{8} - 967758176 x^{7} - 5106134656 x^{6} - 16395827840 x^{5} - 33040465920 x^{4} - 42126246400 x^{3} - 33061324800 x^{2} - 14601216000 x - 2781184000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(465354434733444657917549052039955476309397504000000=2^{18}\cdot 5^{6}\cdot 7^{9}\cdot 19^{2}\cdot 61^{2}\cdot 67^{5}\cdot 97^{4}\cdot 132421^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2387.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 19, 61, 67, 97, 132421$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{20} a^{5} - \frac{1}{10} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{40} a^{6} - \frac{1}{20} a^{4} + \frac{1}{10} a^{3}$, $\frac{1}{80} a^{7} + \frac{1}{20} a^{4} + \frac{1}{5} a^{3} + \frac{1}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{800} a^{8} - \frac{1}{200} a^{6} + \frac{1}{100} a^{5} - \frac{1}{50} a^{4} + \frac{9}{50} a^{3} + \frac{7}{100} a^{2} - \frac{1}{5}$, $\frac{1}{3200} a^{9} - \frac{1}{800} a^{7} - \frac{1}{100} a^{6} - \frac{7}{400} a^{5} + \frac{7}{100} a^{4} + \frac{97}{400} a^{3} + \frac{1}{5} a^{2} + \frac{9}{20} a$, $\frac{1}{6400} a^{10} - \frac{1}{1600} a^{8} - \frac{1}{200} a^{7} - \frac{7}{800} a^{6} + \frac{1}{100} a^{5} + \frac{97}{800} a^{4} + \frac{3}{20} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{128000} a^{11} - \frac{1}{8000} a^{9} + \frac{1}{4000} a^{8} + \frac{79}{16000} a^{7} - \frac{7}{2000} a^{6} - \frac{79}{3200} a^{5} - \frac{133}{2000} a^{4} + \frac{191}{2000} a^{3} - \frac{227}{1000} a^{2} + \frac{73}{200} a + \frac{21}{50}$, $\frac{1}{2560000} a^{12} - \frac{1}{256000} a^{11} - \frac{1}{160000} a^{10} - \frac{1}{20000} a^{9} + \frac{79}{320000} a^{8} + \frac{657}{160000} a^{7} - \frac{703}{64000} a^{6} - \frac{1277}{160000} a^{5} + \frac{3521}{40000} a^{4} + \frac{519}{10000} a^{3} + \frac{47}{800} a^{2} + \frac{917}{2000} a + \frac{37}{100}$, $\frac{1}{5120000000} a^{13} + \frac{19}{128000000} a^{12} - \frac{2069}{1280000000} a^{11} - \frac{2007}{80000000} a^{10} + \frac{91479}{640000000} a^{9} - \frac{21681}{40000000} a^{8} - \frac{3991}{1024000} a^{7} + \frac{336391}{40000000} a^{6} + \frac{3248697}{160000000} a^{5} + \frac{1719813}{40000000} a^{4} + \frac{945571}{8000000} a^{3} - \frac{237669}{1000000} a^{2} + \frac{191779}{400000} a + \frac{20477}{100000}$, $\frac{1}{655360000000} a^{14} - \frac{11}{163840000000} a^{13} + \frac{30171}{163840000000} a^{12} - \frac{129659}{40960000000} a^{11} - \frac{2679497}{81920000000} a^{10} - \frac{634003}{20480000000} a^{9} + \frac{30070009}{81920000000} a^{8} - \frac{41095061}{20480000000} a^{7} - \frac{74859759}{20480000000} a^{6} - \frac{6720723}{640000000} a^{5} + \frac{143868203}{5120000000} a^{4} + \frac{10720891}{256000000} a^{3} + \frac{43085647}{256000000} a^{2} - \frac{2288801}{6400000} a - \frac{478377}{3200000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2356986138750000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5184000 |
| The 79 conjugacy class representatives for [1/2.S(5)^3]S(3) are not computed |
| Character table for [1/2.S(5)^3]S(3) is not computed |
Intermediate fields
| 3.3.469.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.6.6 | $x^{4} - 20$ | $2$ | $2$ | $6$ | $D_{4}$ | $[2, 3]^{2}$ | |
| 2.4.6.5 | $x^{4} + 2 x^{2} - 4$ | $2$ | $2$ | $6$ | $D_{4}$ | $[2, 3]^{2}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.5.0.1 | $x^{5} - x + 4$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 7.10.9.1 | $x^{10} - 7$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.10.0.1 | $x^{10} + x^{2} - 2 x + 14$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 61 | Data not computed | ||||||
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.6.3.2 | $x^{6} - 4489 x^{2} + 4812208$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.5.4.1 | $x^{5} - 97$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 132421 | Data not computed | ||||||