Normalized defining polynomial
\( x^{15} - 432 x^{13} - 2592 x^{12} + 31528 x^{11} + 680480 x^{10} - 787680 x^{9} - 56878848 x^{8} + 112700512 x^{7} + 1181988864 x^{6} - 2781299200 x^{5} - 5558538240 x^{4} + 21733222400 x^{3} - 23532339200 x^{2} + 10637312000 x - 1736704000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(44842222891195545361422304391393705984000000=2^{28}\cdot 5^{6}\cdot 53^{4}\cdot 71^{5}\cdot 27404129^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $813.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 53, 71, 27404129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{8} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{16} a^{7}$, $\frac{1}{32} a^{8}$, $\frac{1}{64} a^{9} - \frac{1}{2} a$, $\frac{1}{256} a^{10} + \frac{1}{32} a^{6} - \frac{1}{8} a^{4} - \frac{1}{8} a^{2}$, $\frac{1}{5120} a^{11} + \frac{1}{640} a^{9} - \frac{1}{160} a^{8} - \frac{19}{640} a^{7} + \frac{1}{32} a^{6} - \frac{1}{32} a^{5} + \frac{1}{10} a^{4} + \frac{11}{160} a^{3} + \frac{1}{5} a^{2} - \frac{1}{4} a$, $\frac{1}{20480} a^{12} + \frac{1}{2560} a^{10} - \frac{1}{640} a^{9} - \frac{19}{2560} a^{8} - \frac{3}{128} a^{7} + \frac{3}{128} a^{6} + \frac{1}{40} a^{5} + \frac{11}{640} a^{4} - \frac{1}{5} a^{3} - \frac{1}{16} a^{2}$, $\frac{1}{204800} a^{13} + \frac{1}{25600} a^{11} - \frac{3}{3200} a^{10} - \frac{19}{25600} a^{9} + \frac{1}{256} a^{8} + \frac{19}{1280} a^{7} - \frac{33}{800} a^{6} - \frac{309}{6400} a^{5} - \frac{19}{200} a^{4} + \frac{31}{160} a^{3} + \frac{1}{40} a^{2}$, $\frac{1}{396971284399436342120278526200354235990559948800} a^{14} - \frac{96354473424159436117596458177670091081157}{99242821099859085530069631550088558997639987200} a^{13} - \frac{207808322415161099233265322815740630967231}{12405352637482385691258703943761069874704998400} a^{12} + \frac{772976177411172587305282688273609676449027}{12405352637482385691258703943761069874704998400} a^{11} - \frac{59994669822304225571134589930569825740422347}{49621410549929542765034815775044279498819993600} a^{10} - \frac{10869849707875122605351541051007998918807559}{1550669079685298211407337992970133734338124800} a^{9} + \frac{36313438253100767217167945380066199994030133}{2481070527496477138251740788752213974940999680} a^{8} - \frac{51646560274708009400982586893025520957540251}{3101338159370596422814675985940267468676249600} a^{7} - \frac{75514298754231828309245308468153993908215917}{12405352637482385691258703943761069874704998400} a^{6} - \frac{78969568556006971162290770962161379493945839}{3101338159370596422814675985940267468676249600} a^{5} + \frac{7102703600186061577707360198709180124503067}{387667269921324552851834498242533433584531200} a^{4} - \frac{628908921501310574179690493312492095116581}{9691681748033113821295862456063335839613280} a^{3} - \frac{2115649340465242131696402060513387905558711}{38766726992132455285183449824253343358453120} a^{2} - \frac{458950292204922855610532823883705979243129}{1938336349606622764259172491212667167922656} a - \frac{41158890847139381557614416580022281671861}{242292043700827845532396561401583395990332}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4662175235540000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2592000 |
| The 70 conjugacy class representatives for [A(5)^3:2]S(3) are not computed |
| Character table for [A(5)^3:2]S(3) is not computed |
Intermediate fields
| 3.3.568.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | R | $15$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ | $15$ | R | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.8.22.101 | $x^{8} + 4 x^{7} + 4 x^{6} + 6 x^{4} + 8 x^{3} + 4 x^{2} + 6$ | $8$ | $1$ | $22$ | $D_4\times C_2$ | $[2, 3, 7/2]^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53 | Data not computed | ||||||
| 71 | Data not computed | ||||||
| 27404129 | Data not computed | ||||||