Normalized defining polynomial
\( x^{15} - 306 x^{13} - 288 x^{12} + 24240 x^{11} + 2756 x^{10} - 112752 x^{9} + 5324544 x^{8} - 1338292 x^{7} - 40210112 x^{6} - 9352320 x^{5} + 85779360 x^{4} + 95779000 x^{3} + 41322000 x^{2} + 7952000 x + 568000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4248332612098651806088183712995608825856000000=2^{18}\cdot 5^{6}\cdot 7^{10}\cdot 71^{4}\cdot 223^{2}\cdot 1709^{2}\cdot 31541^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1101.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 71, 223, 1709, 31541$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{20} a^{11} - \frac{1}{20} a^{9} + \frac{1}{10} a^{8} - \frac{1}{5} a^{6} - \frac{1}{10} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{40} a^{12} + \frac{1}{10} a^{10} + \frac{1}{20} a^{9} - \frac{1}{10} a^{7} + \frac{1}{5} a^{6} + \frac{1}{10} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3}$, $\frac{1}{2800} a^{13} + \frac{1}{280} a^{12} + \frac{1}{200} a^{11} - \frac{3}{175} a^{10} + \frac{3}{35} a^{9} + \frac{7}{100} a^{8} - \frac{37}{175} a^{7} - \frac{16}{175} a^{6} + \frac{11}{100} a^{5} + \frac{81}{350} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{3}{14} a - \frac{2}{7}$, $\frac{1}{3208222619859055324840797854930265432471200} a^{14} - \frac{81342419514345872491587160657504632303}{1604111309929527662420398927465132716235600} a^{13} + \frac{8784051216047403300923499406775480637137}{1604111309929527662420398927465132716235600} a^{12} - \frac{13673014302832452067859317272029736449483}{802055654964763831210199463732566358117800} a^{11} + \frac{7696157213733541757090350776218827384584}{100256956870595478901274932966570794764725} a^{10} + \frac{35882836050408607198131128181428330601839}{802055654964763831210199463732566358117800} a^{9} + \frac{7290877962254665744354575546352255197836}{100256956870595478901274932966570794764725} a^{8} + \frac{19990861819888558151084636502234572268121}{200513913741190957802549865933141589529450} a^{7} - \frac{133886265299872567386278375431252387026149}{802055654964763831210199463732566358117800} a^{6} + \frac{929101175012429854826283287662396542453}{80205565496476383121019946373256635811780} a^{5} + \frac{33942204371563752977108608961524947816467}{200513913741190957802549865933141589529450} a^{4} - \frac{52925891118460434623683249057081815896}{2864484482017013682893569513330594136135} a^{3} + \frac{347091703152135200074394008937338568783}{16041113099295276624203989274651327162356} a^{2} - \frac{850911236029076459317353920467700707925}{4010278274823819156050997318662831790589} a + \frac{238470602725777484827081387358465151126}{4010278274823819156050997318662831790589}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 211856365529000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 648000 |
| The 55 conjugacy class representatives for [A(5)^3]3=A(5)wr3 are not computed |
| Character table for [A(5)^3]3=A(5)wr3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 sibling: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | $15$ | $15$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.12.18.44 | $x^{12} - 6 x^{11} + 8 x^{10} + 6 x^{8} + 4 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 8$ | $4$ | $3$ | $18$ | 12T166 | $[2, 2, 2, 2, 2, 2]^{9}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 71.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 71.5.4.2 | $x^{5} + 142$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 71.5.0.1 | $x^{5} - x + 8$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 223 | Data not computed | ||||||
| 1709 | Data not computed | ||||||
| 31541 | Data not computed | ||||||