Normalized defining polynomial
\( x^{15} - 144 x^{13} - 936 x^{12} + 5540 x^{11} + 75392 x^{10} - 370134 x^{9} - 1459296 x^{8} + 10678864 x^{7} + 27161712 x^{6} - 73028000 x^{5} - 285963840 x^{4} - 324408800 x^{3} - 168640000 x^{2} - 41664000 x - 3968000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4041163971392929828955494668759105536000000=2^{21}\cdot 5^{6}\cdot 31^{4}\cdot 37^{5}\cdot 1387715921^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $692.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31, 37, 1387715921$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{16} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{3}{8} a^{4} - \frac{1}{2} a$, $\frac{1}{160} a^{11} - \frac{1}{40} a^{9} + \frac{1}{40} a^{8} + \frac{1}{8} a^{7} + \frac{1}{5} a^{6} - \frac{27}{80} a^{5} - \frac{1}{10} a^{4} - \frac{7}{20} a^{3} + \frac{9}{20} a^{2}$, $\frac{1}{320} a^{12} - \frac{1}{80} a^{10} + \frac{1}{80} a^{9} + \frac{1}{16} a^{8} + \frac{1}{10} a^{7} - \frac{27}{160} a^{6} + \frac{9}{20} a^{5} - \frac{7}{40} a^{4} - \frac{11}{40} a^{3}$, $\frac{1}{3200} a^{13} - \frac{1}{800} a^{11} - \frac{9}{800} a^{10} + \frac{9}{160} a^{9} + \frac{11}{100} a^{8} - \frac{267}{1600} a^{7} - \frac{1}{200} a^{6} - \frac{87}{400} a^{5} + \frac{59}{400} a^{4} - \frac{1}{5} a^{3} - \frac{3}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{4131812288005219384753008298978190322784000} a^{14} + \frac{350237544233537795099435276864366577}{51647653600065242309412603737227379034800} a^{13} - \frac{92140152807231542560471165615077372591}{1032953072001304846188252074744547580696000} a^{12} + \frac{692527248922468162006652741089362508339}{258238268000326211547063018686136895174000} a^{11} - \frac{148145994294404946390454897618072553907}{206590614400260969237650414948909516139200} a^{10} - \frac{10400076086184434610720369162007484696493}{258238268000326211547063018686136895174000} a^{9} + \frac{64220913079469509786379696387055658530893}{2065906144002609692376504149489095161392000} a^{8} + \frac{14864516660567041274889075101520887122707}{129119134000163105773531509343068447587000} a^{7} - \frac{19623570838400368106780087411017509562277}{516476536000652423094126037372273790348000} a^{6} - \frac{43846573854025865352682482354963746584679}{129119134000163105773531509343068447587000} a^{5} + \frac{12001723028963414127433003365207528723599}{25823826800032621154706301868613689517400} a^{4} + \frac{11804374033306179086649525771857783465617}{25823826800032621154706301868613689517400} a^{3} + \frac{1506962998008160308714079973667539063319}{5164765360006524230941260373722737903480} a^{2} - \frac{207684162740664489977252831284819422687}{1291191340001631057735315093430684475870} a - \frac{29006976302296613471039474927194284951}{129119134000163105773531509343068447587}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 182131728633000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2592000 |
| The 70 conjugacy class representatives for [A(5)^3:2]S(3) are not computed |
| Character table for [A(5)^3:2]S(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | R | R | $15$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.11.14 | $x^{6} + 2 x^{4} + 10$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[4/3, 4/3, 3]_{3}^{2}$ | |
| 2.6.8.4 | $x^{6} + 2 x^{3} + 2 x^{2} + 2$ | $6$ | $1$ | $8$ | $S_4\times C_2$ | $[4/3, 4/3, 2]_{3}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $31$ | 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.5.4.3 | $x^{5} - 1519$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 37 | Data not computed | ||||||
| 1387715921 | Data not computed | ||||||