Normalized defining polynomial
\( x^{15} - 54 x^{13} - 864 x^{12} - 909588 x^{11} - 29003136 x^{10} - 655037640 x^{9} - 16826161536 x^{8} - 301773467776 x^{7} - 3198404365312 x^{6} - 20553073039360 x^{5} - 82841158287360 x^{4} - 211243210342400 x^{3} - 331573827993600 x^{2} - 292872781824000 x - 111570583552000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3805507799533955316962266792656268375035273432076288000000=2^{18}\cdot 5^{6}\cdot 7^{10}\cdot 337\cdot 53201^{4}\cdot 1103777641^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $6897.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 337, 53201, 1103777641$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{8} a^{3} - \frac{1}{4} a$, $\frac{1}{16} a^{4} - \frac{1}{8} a^{2}$, $\frac{1}{80} a^{5} + \frac{1}{40} a^{3} - \frac{1}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{320} a^{6} - \frac{1}{40} a^{4} - \frac{1}{40} a^{3} - \frac{1}{16} a^{2} + \frac{1}{4} a$, $\frac{1}{640} a^{7} - \frac{1}{160} a^{5} - \frac{1}{80} a^{4} - \frac{3}{160} a^{3} - \frac{7}{40} a^{2} + \frac{1}{4} a$, $\frac{1}{6400} a^{8} + \frac{1}{1600} a^{6} - \frac{1}{400} a^{5} + \frac{21}{1600} a^{4} + \frac{9}{200} a^{3} - \frac{9}{100} a^{2} - \frac{2}{5}$, $\frac{1}{409600} a^{9} - \frac{1}{12800} a^{8} + \frac{117}{204800} a^{7} + \frac{3}{12800} a^{6} + \frac{139}{102400} a^{5} + \frac{3}{320} a^{4} - \frac{2089}{51200} a^{3} + \frac{519}{3200} a^{2} + \frac{41}{640} a + \frac{31}{80}$, $\frac{1}{1638400} a^{10} + \frac{53}{819200} a^{8} - \frac{3}{51200} a^{7} + \frac{523}{409600} a^{6} + \frac{17}{12800} a^{5} + \frac{3479}{204800} a^{4} - \frac{363}{12800} a^{3} - \frac{659}{12800} a^{2} + \frac{7}{64} a - \frac{3}{10}$, $\frac{1}{1048576000} a^{11} - \frac{1}{26214400} a^{10} - \frac{467}{524288000} a^{9} - \frac{3599}{65536000} a^{8} + \frac{183843}{262144000} a^{7} + \frac{13597}{32768000} a^{6} - \frac{135949}{26214400} a^{5} - \frac{224809}{16384000} a^{4} + \frac{66279}{4096000} a^{3} + \frac{14487}{64000} a^{2} - \frac{1973}{102400} a + \frac{6209}{12800}$, $\frac{1}{20971520000} a^{12} + \frac{13}{10485760000} a^{10} - \frac{727}{655360000} a^{9} - \frac{406077}{5242880000} a^{8} + \frac{29523}{163840000} a^{7} + \frac{146323}{524288000} a^{6} + \frac{857353}{163840000} a^{5} + \frac{1455229}{81920000} a^{4} - \frac{565629}{10240000} a^{3} + \frac{39979}{2048000} a^{2} - \frac{3287}{32000} a - \frac{2479}{6400}$, $\frac{1}{10485760000000} a^{13} + \frac{1}{524288000000} a^{12} - \frac{1507}{5242880000000} a^{11} + \frac{133957}{1310720000000} a^{10} + \frac{1262643}{2621440000000} a^{9} + \frac{24602759}{655360000000} a^{8} + \frac{45158083}{262144000000} a^{7} - \frac{405850593}{327680000000} a^{6} - \frac{110411333}{20480000000} a^{5} + \frac{187247797}{10240000000} a^{4} - \frac{40501501}{1024000000} a^{3} - \frac{16434169}{256000000} a^{2} + \frac{2274313}{6400000} a + \frac{103897}{400000}$, $\frac{1}{42949672960000000} a^{14} + \frac{213}{5368709120000000} a^{13} + \frac{67333}{21474836480000000} a^{12} - \frac{179049}{536870912000000} a^{11} - \frac{2950894181}{10737418240000000} a^{10} + \frac{702094731}{1342177280000000} a^{9} + \frac{204325638727}{5368709120000000} a^{8} - \frac{485239993939}{671088640000000} a^{7} - \frac{78226061497}{67108864000000} a^{6} - \frac{19179866241}{10485760000000} a^{5} - \frac{61181382931}{20971520000000} a^{4} + \frac{1210340761}{104857600000} a^{3} + \frac{1025477481}{262144000000} a^{2} - \frac{1275724407}{3276800000} a - \frac{127132351}{819200000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 473856133750000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5184000 |
| The 133 conjugacy class representatives for [S(5)^3]3=S(5)wr3 are not computed |
| Character table for [S(5)^3]3=S(5)wr3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | R | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | $15$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||
| 337 | Data not computed | ||||||
| 53201 | Data not computed | ||||||
| 1103777641 | Data not computed | ||||||