Normalized defining polynomial
\( x^{15} - 720 x^{13} - 7416 x^{12} + 77582 x^{11} + 1097648 x^{10} - 5022270 x^{9} - 46796256 x^{8} + 189147496 x^{7} + 426992368 x^{6} - 1799651680 x^{5} - 146822400 x^{4} + 4945060000 x^{3} - 5522153600 x^{2} + 2283904000 x - 326272000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37185061201306863596258469574643558678528000000=2^{21}\cdot 5^{6}\cdot 13\cdot 37^{5}\cdot 293^{2}\cdot 2549^{4}\cdot 18637^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1272.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 37, 293, 2549, 18637$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{16} a^{10} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{160} a^{11} + \frac{1}{40} a^{8} + \frac{11}{80} a^{7} - \frac{1}{5} a^{6} + \frac{5}{16} a^{5} - \frac{7}{20} a^{4} + \frac{7}{20} a^{3} + \frac{1}{20} a^{2} - \frac{1}{2} a$, $\frac{1}{320} a^{12} + \frac{1}{80} a^{9} + \frac{11}{160} a^{8} + \frac{3}{20} a^{7} + \frac{5}{32} a^{6} + \frac{13}{40} a^{5} + \frac{7}{40} a^{4} - \frac{19}{40} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{1600} a^{13} - \frac{1}{100} a^{10} - \frac{9}{800} a^{9} + \frac{2}{25} a^{8} - \frac{3}{160} a^{7} + \frac{19}{100} a^{6} - \frac{63}{200} a^{5} - \frac{11}{50} a^{4} - \frac{1}{10} a^{3} + \frac{1}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{5860948555055282394966333512611156453507952637446816000} a^{14} + \frac{21438049090922799566558256502373282392105538822241}{73261856938191029937079168907639455668849407968085200} a^{13} - \frac{2384637307602424169463220015504953331567707299879}{1831546423454775748426979222690986391721235199202130} a^{12} - \frac{2155396188735113888038833099195210237063123786821027}{732618569381910299370791689076394556688494079680852000} a^{11} - \frac{76560371460294433738772319285624336273891330191089449}{2930474277527641197483166756305578226753976318723408000} a^{10} + \frac{3295364805455511519119549560742999381484807845386743}{366309284690955149685395844538197278344247039840426000} a^{9} - \frac{45256042261035178809258045360951757906716904895235619}{586094855505528239496633351261115645350795263744681600} a^{8} + \frac{3223373479395734402974849127959858327778091566020959}{22894330293184696855337240283637329896515439990026625} a^{7} + \frac{126758829693342743380223105040913654569656330752597577}{732618569381910299370791689076394556688494079680852000} a^{6} - \frac{71329067690015817293206776973463599833106293293227817}{366309284690955149685395844538197278344247039840426000} a^{5} + \frac{13918907454405525861987295973872460530843027246135743}{36630928469095514968539584453819727834424703984042600} a^{4} + \frac{2267374096768589400004850557754763585971531826480463}{18315464234547757484269792226909863917212351992021300} a^{3} + \frac{439835445129060284671364913223570116195018111802749}{7326185693819102993707916890763945566884940796808520} a^{2} - \frac{20113966017582696560616313789347874218023712629247}{1831546423454775748426979222690986391721235199202130} a - \frac{91243489741114916276886617613652190209433913981393}{183154642345477574842697922269098639172123519920213}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16057293665000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 10368000 |
| The 140 conjugacy class representatives for [S(5)^3]S(3)=S(5)wrS(3) are not computed |
| Character table for [S(5)^3]S(3)=S(5)wrS(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.11.15 | $x^{6} + 2 x^{4} + 2 x^{2} + 10$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
| 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.10.0.1 | $x^{10} + 2 x^{2} - 2 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $37$ | 37.5.0.1 | $x^{5} - x + 13$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 37.10.5.1 | $x^{10} - 2738 x^{6} + 1874161 x^{2} - 11719128733$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 293 | Data not computed | ||||||
| 2549 | Data not computed | ||||||
| 18637 | Data not computed | ||||||