Normalized defining polynomial
\( x^{15} + 9 x^{13} - 6 x^{12} - 2646 x^{11} + 3528 x^{10} + 6330 x^{9} - 15012 x^{8} + 1341405 x^{7} - 3552616 x^{6} - 7159347 x^{5} + 34121178 x^{4} - 47335848 x^{3} + 31732560 x^{2} - 10577520 x + 1410336 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3128917033950916372142938576036281=3^{22}\cdot 59^{2}\cdot 83^{2}\cdot 401^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $171.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 59, 83, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a^{2} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{16} a^{5} + \frac{1}{8} a^{2} + \frac{7}{16} a + \frac{3}{8}$, $\frac{1}{96} a^{6} - \frac{1}{32} a^{5} + \frac{1}{48} a^{3} - \frac{5}{32} a^{2} + \frac{11}{32} a - \frac{3}{16}$, $\frac{1}{192} a^{7} - \frac{1}{192} a^{6} - \frac{1}{32} a^{5} - \frac{5}{96} a^{4} + \frac{1}{192} a^{3} - \frac{3}{64} a^{2} + \frac{3}{16} a + \frac{7}{16}$, $\frac{1}{384} a^{8} + \frac{1}{384} a^{6} + \frac{1}{48} a^{5} - \frac{3}{128} a^{4} + \frac{1}{48} a^{3} + \frac{1}{128} a^{2} + \frac{3}{8} a + \frac{3}{32}$, $\frac{1}{2304} a^{9} - \frac{1}{768} a^{8} - \frac{1}{768} a^{7} - \frac{11}{2304} a^{6} + \frac{1}{768} a^{5} - \frac{23}{768} a^{4} + \frac{79}{2304} a^{3} - \frac{17}{256} a^{2} - \frac{1}{16} a - \frac{71}{192}$, $\frac{1}{4608} a^{10} + \frac{1}{1152} a^{7} - \frac{1}{256} a^{6} + \frac{3}{128} a^{5} - \frac{47}{1152} a^{4} - \frac{1}{128} a^{3} - \frac{31}{512} a^{2} - \frac{17}{384} a - \frac{47}{128}$, $\frac{1}{9216} a^{11} - \frac{1}{9216} a^{10} + \frac{1}{2304} a^{8} - \frac{11}{4608} a^{7} + \frac{5}{1536} a^{6} - \frac{1}{1152} a^{5} + \frac{19}{1152} a^{4} - \frac{145}{3072} a^{3} + \frac{505}{3072} a^{2} + \frac{95}{192} a + \frac{95}{256}$, $\frac{1}{9216} a^{12} - \frac{1}{9216} a^{10} - \frac{1}{1536} a^{8} + \frac{5}{2304} a^{7} - \frac{5}{1536} a^{6} - \frac{13}{768} a^{5} - \frac{7}{9216} a^{4} + \frac{143}{2304} a^{3} - \frac{249}{1024} a^{2} + \frac{113}{768} a - \frac{343}{768}$, $\frac{1}{294912} a^{13} - \frac{1}{73728} a^{12} - \frac{11}{294912} a^{11} + \frac{11}{147456} a^{10} - \frac{1}{147456} a^{9} - \frac{1}{36864} a^{8} + \frac{17}{147456} a^{7} + \frac{205}{73728} a^{6} + \frac{1285}{294912} a^{5} + \frac{239}{24576} a^{4} - \frac{20791}{294912} a^{3} + \frac{545}{49152} a^{2} + \frac{143}{8192} a + \frac{2227}{12288}$, $\frac{1}{9437184} a^{14} - \frac{1}{4718592} a^{13} + \frac{13}{9437184} a^{12} - \frac{1}{294912} a^{11} - \frac{89}{1572864} a^{10} + \frac{125}{2359296} a^{9} - \frac{5527}{4718592} a^{8} - \frac{129}{131072} a^{7} + \frac{28781}{9437184} a^{6} - \frac{2315}{1572864} a^{5} + \frac{249425}{9437184} a^{4} - \frac{20185}{1179648} a^{3} + \frac{3797}{131072} a^{2} + \frac{1117}{24576} a + \frac{81763}{196608}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 571892290212 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 38880 |
| The 48 conjugacy class representatives for [1/2.S(3)^5]D(5) |
| Character table for [1/2.S(3)^5]D(5) is not computed |
Intermediate fields
| 5.5.160801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | R | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.4 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $[2]^{2}$ |
| 3.6.10.4 | $x^{6} + 3 x^{3} + 72$ | $3$ | $2$ | $10$ | $S_3^2$ | $[3/2, 5/2]_{2}^{2}$ | |
| 3.6.8.1 | $x^{6} + 6 x^{5} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_3^2:C_4$ | $[2, 2]^{4}$ | |
| 59 | Data not computed | ||||||
| 83 | Data not computed | ||||||
| 401 | Data not computed | ||||||