Normalized defining polynomial
\( x^{15} - x^{14} - 28 x^{13} - 79 x^{12} - 1100 x^{11} + 1753 x^{10} + 15805 x^{9} + 2562 x^{8} + 38320 x^{7} - 121800 x^{6} - 728448 x^{5} + 301216 x^{4} + 1038400 x^{3} - 167680 x^{2} - 76800 x + 4096 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(296854871574412530032892056987579392=2^{10}\cdot 37^{5}\cdot 151^{2}\cdot 44269^{2}\cdot 305873^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $231.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 151, 44269, 305873$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{24} a^{9} - \frac{1}{24} a^{8} + \frac{1}{6} a^{7} + \frac{3}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{24} a^{4} + \frac{5}{24} a^{3} + \frac{5}{12} a^{2} + \frac{1}{3}$, $\frac{1}{48} a^{10} - \frac{1}{48} a^{9} + \frac{1}{12} a^{8} + \frac{3}{16} a^{7} + \frac{1}{4} a^{6} - \frac{23}{48} a^{5} + \frac{5}{48} a^{4} - \frac{7}{24} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{96} a^{11} - \frac{1}{96} a^{10} - \frac{11}{96} a^{8} + \frac{5}{24} a^{7} + \frac{37}{96} a^{6} - \frac{19}{96} a^{5} - \frac{3}{16} a^{4} + \frac{7}{24} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{192} a^{12} - \frac{1}{192} a^{11} - \frac{1}{64} a^{9} + \frac{1}{16} a^{8} - \frac{9}{64} a^{7} + \frac{53}{192} a^{6} - \frac{3}{32} a^{5} + \frac{3}{16} a^{4} + \frac{1}{24} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{377088} a^{13} - \frac{665}{377088} a^{12} + \frac{91}{94272} a^{11} - \frac{3839}{377088} a^{10} - \frac{1465}{94272} a^{9} - \frac{34871}{377088} a^{8} - \frac{13051}{377088} a^{7} - \frac{70771}{188544} a^{6} - \frac{7415}{23568} a^{5} + \frac{8963}{47136} a^{4} - \frac{439}{11784} a^{3} + \frac{5125}{11784} a^{2} - \frac{1753}{5892} a + \frac{440}{1473}$, $\frac{1}{639834965658239429481476711424} a^{14} - \frac{466934022113022320159869}{639834965658239429481476711424} a^{13} + \frac{19486220540407073336994547}{39989685353639964342592294464} a^{12} + \frac{54301627185155524439508049}{639834965658239429481476711424} a^{11} + \frac{633088282061337692247585011}{79979370707279928685184588928} a^{10} + \frac{4394376530884953211036496659}{213278321886079809827158903808} a^{9} + \frac{45375614523851492478642312001}{639834965658239429481476711424} a^{8} - \frac{77245294085923075097949789373}{319917482829119714740738355712} a^{7} - \frac{31982631463001215866789997675}{79979370707279928685184588928} a^{6} - \frac{3738966879616492891260176947}{26659790235759976228394862976} a^{5} + \frac{2756351879927625677685783583}{19994842676819982171296147232} a^{4} + \frac{6206713470537056159382741481}{19994842676819982171296147232} a^{3} + \frac{2755085517286141061398119203}{9997421338409991085648073616} a^{2} + \frac{79062963252932738746566415}{624838833650624442853004601} a - \frac{73665467209585933799953071}{208279611216874814284334867}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10419229882500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6000 |
| The 40 conjugacy class representatives for [D(5)^3]S(3)=D(5)wrS(3) |
| Character table for [D(5)^3]S(3)=D(5)wrS(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 37 | Data not computed | ||||||
| $151$ | $\Q_{151}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{151}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 151.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 44269 | Data not computed | ||||||
| 305873 | Data not computed | ||||||