Normalized defining polynomial
\( x^{15} - 33 x^{13} - 22 x^{12} + 63 x^{11} + 84 x^{10} + 4618 x^{9} + 9180 x^{8} - 13401 x^{7} - 50696 x^{6} - 93123 x^{5} - 160026 x^{4} - 186376 x^{3} - 121680 x^{2} - 40560 x - 5408 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29334808557573827860354802688=2^{10}\cdot 3^{20}\cdot 13^{2}\cdot 36497^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{6} - \frac{1}{9} a^{3} - \frac{2}{9}$, $\frac{1}{9} a^{7} - \frac{1}{9} a^{4} - \frac{2}{9} a$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{5} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{9} - \frac{1}{9} a^{3} - \frac{2}{27}$, $\frac{1}{27} a^{10} - \frac{1}{9} a^{4} - \frac{2}{27} a$, $\frac{1}{216} a^{11} - \frac{1}{216} a^{9} - \frac{1}{36} a^{8} - \frac{1}{24} a^{7} - \frac{1}{18} a^{6} - \frac{1}{36} a^{5} - \frac{1}{6} a^{4} + \frac{5}{72} a^{3} - \frac{10}{27} a^{2} - \frac{1}{8} a - \frac{41}{108}$, $\frac{1}{5184} a^{12} + \frac{1}{864} a^{11} - \frac{1}{576} a^{10} + \frac{13}{1296} a^{9} - \frac{5}{576} a^{8} + \frac{5}{96} a^{7} - \frac{17}{864} a^{6} - \frac{1}{24} a^{5} + \frac{29}{192} a^{4} + \frac{65}{2592} a^{3} + \frac{647}{1728} a^{2} + \frac{41}{144} a - \frac{71}{1296}$, $\frac{1}{41472} a^{13} - \frac{1}{10368} a^{12} - \frac{23}{13824} a^{11} - \frac{25}{20736} a^{10} - \frac{757}{41472} a^{9} - \frac{1}{96} a^{8} + \frac{109}{6912} a^{7} + \frac{115}{3456} a^{6} + \frac{263}{4608} a^{5} + \frac{811}{10368} a^{4} + \frac{5825}{41472} a^{3} - \frac{301}{6912} a^{2} + \frac{4543}{10368} a - \frac{1037}{5184}$, $\frac{1}{4313088} a^{14} + \frac{1}{165888} a^{13} - \frac{7}{159744} a^{12} - \frac{1033}{539136} a^{11} - \frac{37585}{4313088} a^{10} - \frac{12817}{718848} a^{9} - \frac{18947}{718848} a^{8} + \frac{4523}{179712} a^{7} - \frac{427}{159744} a^{6} + \frac{69383}{2156544} a^{5} + \frac{107753}{4313088} a^{4} + \frac{17}{29952} a^{3} - \frac{10453}{539136} a^{2} - \frac{3779}{10368} a + \frac{1723}{6912}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1315631457.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 466560 |
| The 72 conjugacy class representatives for [1/2.S(3)^5]S(5) are not computed |
| Character table for [1/2.S(3)^5]S(5) is not computed |
Intermediate fields
| 5.5.36497.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.10.10.3 | $x^{10} - 9 x^{8} + 22 x^{6} - 46 x^{4} + 9 x^{2} - 9$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $3$ | 3.3.4.4 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $[2]^{2}$ |
| 3.12.16.19 | $x^{12} + 66 x^{11} - 45 x^{10} - 120 x^{9} + 9 x^{8} + 108 x^{7} + 18 x^{6} - 108 x^{5} - 81 x^{4} - 54 x^{3} - 81 x^{2} - 81$ | $3$ | $4$ | $16$ | 12T46 | $[2, 2]^{8}$ | |
| $13$ | 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.12.0.1 | $x^{12} + x^{2} - x + 2$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 36497 | Data not computed | ||||||