Normalized defining polynomial
\( x^{15} - 5274 x^{13} - 84384 x^{12} + 7855432 x^{11} + 261499904 x^{10} - 819354600 x^{9} - 171313992576 x^{8} - 3704165887616 x^{7} - 40366806612992 x^{6} - 260417811445760 x^{5} - 1050040215797760 x^{4} - 2677580453478400 x^{3} - 4202812479897600 x^{2} - 3712263389184000 x - 1414195576832000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2606494027779061551579411214493333175014953976893624414572544000000=2^{18}\cdot 5^{6}\cdot 13^{10}\cdot 79^{2}\cdot 103^{4}\cdot 6547^{4}\cdot 1891234619^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26{,}775.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 79, 103, 6547, 1891234619$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{20} a^{5} + \frac{1}{10} a^{3} + \frac{1}{10} a^{2}$, $\frac{1}{40} a^{6} + \frac{1}{20} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{160} a^{7} - \frac{1}{80} a^{5} - \frac{1}{20} a^{4} - \frac{1}{20} a^{3} + \frac{1}{5} a^{2} - \frac{1}{4} a$, $\frac{1}{3200} a^{8} - \frac{13}{1600} a^{6} + \frac{1}{50} a^{5} - \frac{47}{400} a^{4} - \frac{4}{25} a^{3} - \frac{77}{400} a^{2} + \frac{1}{5}$, $\frac{1}{102400} a^{9} + \frac{67}{51200} a^{7} + \frac{27}{3200} a^{6} - \frac{287}{12800} a^{5} + \frac{9}{200} a^{4} + \frac{1763}{12800} a^{3} - \frac{27}{160} a^{2} + \frac{21}{160} a - \frac{1}{4}$, $\frac{1}{32358400} a^{10} - \frac{69}{647168} a^{8} - \frac{1093}{1011200} a^{7} - \frac{28959}{4044800} a^{6} + \frac{591}{63200} a^{5} - \frac{482589}{4044800} a^{4} + \frac{23721}{252800} a^{3} + \frac{36713}{252800} a^{2} + \frac{163}{1264} a - \frac{143}{395}$, $\frac{1}{5177344000} a^{11} - \frac{1}{129433600} a^{10} + \frac{3963}{2588672000} a^{9} - \frac{21369}{323584000} a^{8} + \frac{1954389}{647168000} a^{7} + \frac{357451}{80896000} a^{6} - \frac{482229}{25886720} a^{5} + \frac{6550691}{80896000} a^{4} - \frac{2567141}{20224000} a^{3} - \frac{62183}{316000} a^{2} - \frac{81513}{505600} a + \frac{16069}{63200}$, $\frac{1}{103546880000} a^{12} + \frac{603}{51773440000} a^{10} + \frac{11863}{3235840000} a^{9} + \frac{25989}{12943360000} a^{8} - \frac{95611}{404480000} a^{7} + \frac{19702839}{2588672000} a^{6} + \frac{8786273}{808960000} a^{5} + \frac{16180889}{404480000} a^{4} + \frac{12248211}{50560000} a^{3} + \frac{849559}{10112000} a^{2} - \frac{36621}{79000} a - \frac{4179}{31600}$, $\frac{1}{207093760000000} a^{13} - \frac{3}{1294336000000} a^{12} + \frac{883}{103546880000000} a^{11} + \frac{96273}{6471680000000} a^{10} + \frac{34431049}{25886720000000} a^{9} - \frac{47255161}{808960000000} a^{8} - \frac{13133890201}{5177344000000} a^{7} + \frac{2200411503}{1617920000000} a^{6} + \frac{23355112363}{1617920000000} a^{5} - \frac{5182533873}{202240000000} a^{4} - \frac{4367270991}{20224000000} a^{3} + \frac{21703537}{632000000} a^{2} - \frac{54258059}{252800000} a - \frac{8364717}{31600000}$, $\frac{1}{212064010240000000} a^{14} - \frac{43}{26508001280000000} a^{13} - \frac{467757}{106032005120000000} a^{12} + \frac{877557}{13254000640000000} a^{11} + \frac{394549561}{26508001280000000} a^{10} - \frac{2437155811}{3313500160000000} a^{9} + \frac{1916086320323}{26508001280000000} a^{8} + \frac{6859323783921}{3313500160000000} a^{7} - \frac{7867406390729}{1656750080000000} a^{6} - \frac{803775087363}{51773440000000} a^{5} - \frac{10733549874319}{103546880000000} a^{4} + \frac{514282104001}{2588672000000} a^{3} - \frac{42221829731}{1294336000000} a^{2} + \frac{1065192793}{3235840000} a - \frac{1268768939}{4044800000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81794670831100000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2592000 |
| The 71 conjugacy class representatives for [1/2.S(5)^3]3 are not computed |
| Character table for [1/2.S(5)^3]3 is not computed |
Intermediate fields
| 3.3.169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | $15$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13 | Data not computed | ||||||
| 79 | Data not computed | ||||||
| 103 | Data not computed | ||||||
| 6547 | Data not computed | ||||||
| 1891234619 | Data not computed | ||||||