Normalized defining polynomial
\( x^{15} - 234 x^{13} - 3744 x^{12} - 1149208 x^{11} - 36325376 x^{10} - 818687880 x^{9} - 20997415296 x^{8} - 376447428736 x^{7} - 3989611359232 x^{6} - 25637180200960 x^{5} - 103333059624960 x^{4} - 263497127526400 x^{3} - 413593180569600 x^{2} - 365318897664000 x - 139169103872000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25030409738237508654535690145991819085872813409237356544000000=2^{18}\cdot 5^{6}\cdot 7^{10}\cdot 13^{2}\cdot 421\cdot 66361^{4}\cdot 3959620477^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12{,}394.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 13, 421, 66361, 3959620477$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{20} a^{5} + \frac{1}{10} a^{3} + \frac{1}{10} a^{2}$, $\frac{1}{40} a^{6} + \frac{1}{20} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{160} a^{7} - \frac{1}{80} a^{5} - \frac{1}{20} a^{4} - \frac{1}{20} a^{3} + \frac{1}{5} a^{2} - \frac{1}{4} a$, $\frac{1}{3200} a^{8} - \frac{13}{1600} a^{6} + \frac{1}{50} a^{5} - \frac{47}{400} a^{4} - \frac{4}{25} a^{3} + \frac{23}{400} a^{2} + \frac{1}{5}$, $\frac{1}{102400} a^{9} + \frac{27}{51200} a^{7} - \frac{13}{3200} a^{6} + \frac{213}{12800} a^{5} - \frac{1}{200} a^{4} - \frac{17}{12800} a^{3} - \frac{39}{160} a^{2} + \frac{41}{160} a - \frac{1}{4}$, $\frac{1}{409600} a^{10} + \frac{27}{204800} a^{8} - \frac{13}{12800} a^{7} - \frac{427}{51200} a^{6} + \frac{9}{800} a^{5} - \frac{1297}{51200} a^{4} + \frac{41}{640} a^{3} + \frac{137}{640} a^{2} + \frac{7}{16} a$, $\frac{1}{65536000} a^{11} - \frac{1}{1638400} a^{10} + \frac{83}{32768000} a^{9} + \frac{511}{4096000} a^{8} + \frac{2409}{8192000} a^{7} + \frac{9271}{1024000} a^{6} + \frac{32467}{1638400} a^{5} - \frac{77649}{1024000} a^{4} + \frac{17559}{256000} a^{3} + \frac{547}{4000} a^{2} + \frac{1427}{6400} a - \frac{71}{800}$, $\frac{1}{1310720000} a^{12} - \frac{77}{655360000} a^{10} - \frac{17}{40960000} a^{9} + \frac{21209}{163840000} a^{8} + \frac{6409}{5120000} a^{7} - \frac{392813}{32768000} a^{6} - \frac{16667}{10240000} a^{5} - \frac{342331}{5120000} a^{4} - \frac{68969}{640000} a^{3} - \frac{28381}{128000} a^{2} + \frac{409}{1000} a + \frac{81}{400}$, $\frac{1}{2621440000000} a^{13} - \frac{3}{16384000000} a^{12} + \frac{3403}{1310720000000} a^{11} + \frac{23193}{81920000000} a^{10} + \frac{902269}{327680000000} a^{9} - \frac{843241}{10240000000} a^{8} + \frac{140768387}{65536000000} a^{7} - \frac{77930837}{20480000000} a^{6} + \frac{399793623}{20480000000} a^{5} + \frac{140453067}{2560000000} a^{4} + \frac{8423989}{256000000} a^{3} + \frac{1490677}{8000000} a^{2} + \frac{1005961}{3200000} a - \frac{71457}{400000}$, $\frac{1}{2684354560000000} a^{14} - \frac{43}{335544320000000} a^{13} - \frac{465237}{1342177280000000} a^{12} + \frac{774237}{167772160000000} a^{11} - \frac{196094739}{335544320000000} a^{10} - \frac{138417391}{41943040000000} a^{9} - \frac{17787550897}{335544320000000} a^{8} - \frac{52385880779}{41943040000000} a^{7} - \frac{18863097709}{20971520000000} a^{6} - \frac{7757499023}{655360000000} a^{5} - \frac{101548007499}{1310720000000} a^{4} + \frac{7360241221}{32768000000} a^{3} - \frac{3510557551}{16384000000} a^{2} + \frac{15144253}{40960000} a + \frac{5981481}{51200000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 68524043832000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5184000 |
| The 133 conjugacy class representatives for [S(5)^3]3=S(5)wr3 are not computed |
| Character table for [S(5)^3]3=S(5)wr3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | R | $15$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 421 | Data not computed | ||||||
| 66361 | Data not computed | ||||||
| 3959620477 | Data not computed | ||||||