Normalized defining polynomial
\( x^{15} - 5 x^{14} - 57 x^{13} + 289 x^{12} + 825 x^{11} - 4717 x^{10} - 3601 x^{9} + 31833 x^{8} + 1339 x^{7} - 83815 x^{6} + 2237 x^{5} + 55003 x^{4} + 36939 x^{3} + 1177 x^{2} - 4915 x + 235 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2264485717039079949313600000000=2^{12}\cdot 5^{8}\cdot 13^{10}\cdot 101323^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 101323$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4}$, $\frac{1}{4} a^{5} - \frac{1}{4} a$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{8} a^{2} + \frac{1}{8}$, $\frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{16} a^{5} + \frac{1}{16} a^{4} - \frac{1}{16} a^{3} + \frac{1}{16} a^{2} - \frac{7}{16} a + \frac{7}{16}$, $\frac{1}{32} a^{8} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{3}{16} a^{2} - \frac{3}{8} a - \frac{5}{32}$, $\frac{1}{128} a^{9} + \frac{1}{128} a^{8} + \frac{1}{64} a^{7} + \frac{3}{64} a^{6} - \frac{3}{32} a^{5} - \frac{1}{8} a^{4} + \frac{11}{64} a^{3} + \frac{1}{64} a^{2} + \frac{51}{128} a - \frac{57}{128}$, $\frac{1}{256} a^{10} + \frac{1}{256} a^{8} + \frac{1}{64} a^{7} + \frac{7}{128} a^{6} - \frac{1}{64} a^{5} + \frac{3}{128} a^{4} + \frac{11}{64} a^{3} - \frac{47}{256} a^{2} - \frac{11}{64} a + \frac{25}{256}$, $\frac{1}{1024} a^{11} - \frac{1}{1024} a^{10} + \frac{1}{1024} a^{9} - \frac{13}{1024} a^{8} + \frac{5}{512} a^{7} - \frac{25}{512} a^{6} - \frac{27}{512} a^{5} + \frac{19}{512} a^{4} + \frac{165}{1024} a^{3} + \frac{163}{1024} a^{2} - \frac{379}{1024} a + \frac{119}{1024}$, $\frac{1}{2048} a^{12} + \frac{1}{512} a^{9} + \frac{13}{2048} a^{8} - \frac{1}{256} a^{7} - \frac{1}{256} a^{6} - \frac{13}{128} a^{5} - \frac{53}{2048} a^{4} + \frac{21}{256} a^{3} + \frac{41}{256} a^{2} + \frac{11}{512} a - \frac{281}{2048}$, $\frac{1}{4096} a^{13} - \frac{1}{4096} a^{12} + \frac{1}{1024} a^{10} + \frac{9}{4096} a^{9} - \frac{21}{4096} a^{8} - \frac{25}{512} a^{6} - \frac{357}{4096} a^{5} - \frac{291}{4096} a^{4} + \frac{5}{128} a^{3} - \frac{71}{1024} a^{2} - \frac{1861}{4096} a - \frac{1255}{4096}$, $\frac{1}{5780610580480} a^{14} + \frac{18864159}{2890305290240} a^{13} - \frac{1204108623}{5780610580480} a^{12} - \frac{93484539}{289030529024} a^{11} - \frac{703117087}{1156122116096} a^{10} + \frac{8468526049}{2890305290240} a^{9} + \frac{88035529573}{5780610580480} a^{8} - \frac{21800725201}{722576322560} a^{7} - \frac{65535793529}{1156122116096} a^{6} + \frac{14716645549}{578061058048} a^{5} - \frac{63608991213}{5780610580480} a^{4} - \frac{216044613399}{1445152645120} a^{3} + \frac{1090466500151}{5780610580480} a^{2} - \frac{241092546669}{578061058048} a - \frac{375358461717}{1156122116096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28726471148.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3000 |
| The 32 conjugacy class representatives for [D(5)^3]3=D(5)wr3 |
| Character table for [D(5)^3]3=D(5)wr3 is not computed |
Intermediate fields
| 3.3.169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{5}$ | $15$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.5.6.1 | $x^{5} + 10 x^{2} + 5$ | $5$ | $1$ | $6$ | $D_{5}$ | $[3/2]_{2}$ | |
| 5.5.0.1 | $x^{5} - x + 2$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 13 | Data not computed | ||||||
| 101323 | Data not computed | ||||||