Normalized defining polynomial
\( x^{15} - 4 x^{14} - 98 x^{13} + 222 x^{12} + 2460 x^{11} - 1774 x^{10} - 6038 x^{9} - 36416 x^{8} - 276240 x^{7} + 345120 x^{6} + 980608 x^{5} + 64640 x^{4} + 3744000 x^{3} - 2539520 x^{2} + 204800 x + 32768 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1593894329827244387250162786359001088=2^{14}\cdot 37^{5}\cdot 252949^{2}\cdot 4682551^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $259.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 252949, 4682551$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{48} a^{9} + \frac{1}{24} a^{8} - \frac{1}{8} a^{7} + \frac{5}{24} a^{6} - \frac{1}{6} a^{5} + \frac{3}{8} a^{4} - \frac{5}{24} a^{3} - \frac{1}{4} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{96} a^{10} + \frac{1}{48} a^{8} - \frac{1}{48} a^{7} - \frac{1}{24} a^{6} + \frac{5}{48} a^{5} - \frac{23}{48} a^{4} - \frac{1}{6} a^{3} + \frac{1}{12} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{192} a^{11} - \frac{1}{96} a^{9} - \frac{5}{96} a^{8} + \frac{5}{48} a^{7} - \frac{5}{32} a^{6} - \frac{7}{96} a^{5} + \frac{1}{24} a^{4} - \frac{1}{4} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3}$, $\frac{1}{768} a^{12} - \frac{1}{384} a^{10} + \frac{1}{128} a^{9} - \frac{11}{192} a^{8} + \frac{11}{128} a^{7} - \frac{23}{384} a^{6} - \frac{13}{32} a^{5} - \frac{7}{16} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{3072} a^{13} - \frac{1}{1536} a^{11} - \frac{5}{1536} a^{10} - \frac{1}{256} a^{9} + \frac{49}{1536} a^{8} + \frac{89}{1536} a^{7} + \frac{3}{128} a^{6} + \frac{49}{192} a^{5} + \frac{17}{96} a^{4} + \frac{7}{24} a^{3} - \frac{1}{24} a^{2} + \frac{5}{12} a - \frac{1}{3}$, $\frac{1}{1041516553745985857800602751709184} a^{14} + \frac{5298072073300960730883101853}{86793046145498821483383562642432} a^{13} + \frac{324501192095810716008548366807}{520758276872992928900301375854592} a^{12} + \frac{397699487985617399051214542351}{520758276872992928900301375854592} a^{11} - \frac{346077946512404661126660813905}{260379138436496464450150687927296} a^{10} - \frac{448601355458910233606110692525}{173586092290997642966767125284864} a^{9} + \frac{8517214265355852880981619257141}{520758276872992928900301375854592} a^{8} + \frac{2462173276904400540476625482581}{32547392304562058056268835990912} a^{7} - \frac{7965170774265196139943228386767}{65094784609124116112537671981824} a^{6} - \frac{2108320354973069566612811800265}{10849130768187352685422945330304} a^{5} + \frac{2265530840116850066415719205331}{8136848076140514514067208997728} a^{4} - \frac{2386930768741221732764753059579}{8136848076140514514067208997728} a^{3} + \frac{566203780797954709966391012343}{1356141346023419085677868166288} a^{2} - \frac{143536407371368565695788834325}{508553004758782157129200562358} a - \frac{95758717684713657447522330532}{254276502379391078564600281179}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 80704179128700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6000 |
| The 40 conjugacy class representatives for [D(5)^3]S(3)=D(5)wrS(3) |
| Character table for [D(5)^3]S(3)=D(5)wrS(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | $15$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.6.8 | $x^{6} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 2.6.6.8 | $x^{6} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 37 | Data not computed | ||||||
| 252949 | Data not computed | ||||||
| 4682551 | Data not computed | ||||||