Normalized defining polynomial
\( x^{15} - 684 x^{13} - 432 x^{12} + 146384 x^{11} + 86128 x^{10} - 12084336 x^{9} - 4014720 x^{8} + 382478112 x^{7} - 471272384 x^{6} - 1146538240 x^{5} + 1889210880 x^{4} + 416368000 x^{3} - 1810022400 x^{2} + 879872000 x - 125696000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1584541601971758745306546692340589068288000000=2^{22}\cdot 5^{6}\cdot 19^{2}\cdot 37^{5}\cdot 491^{4}\cdot 1307^{2}\cdot 3119^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1031.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 37, 491, 1307, 3119$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{16} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{32} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{320} a^{11} - \frac{1}{80} a^{9} + \frac{1}{40} a^{8} + \frac{1}{80} a^{7} + \frac{1}{40} a^{6} - \frac{1}{20} a^{5} + \frac{1}{10} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{640} a^{12} - \frac{1}{160} a^{10} + \frac{1}{80} a^{9} - \frac{1}{40} a^{8} + \frac{1}{80} a^{7} - \frac{1}{40} a^{6} + \frac{1}{20} a^{4} - \frac{1}{10} a^{3}$, $\frac{1}{6400} a^{13} - \frac{1}{1600} a^{11} - \frac{1}{200} a^{10} + \frac{1}{100} a^{9} - \frac{1}{200} a^{8} - \frac{1}{400} a^{7} + \frac{1}{20} a^{6} + \frac{1}{200} a^{5} - \frac{3}{50} a^{4} - \frac{1}{5} a^{3} - \frac{1}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{18800109198937964347554447509148346456881789452800} a^{14} - \frac{406509581611104782425539432685563766150253939}{9400054599468982173777223754574173228440894726400} a^{13} + \frac{958946506869964345650360564948195444008161787}{2350013649867245543444305938643543307110223681600} a^{12} + \frac{188223766108736735205931127653121021261903419}{235001364986724554344430593864354330711022368160} a^{11} - \frac{763180166926716332658383591512992223825473397}{58750341246681138586107648466088582677755592040} a^{10} + \frac{590894635589158723582643280237445487866075351}{1175006824933622771722152969321771653555111840800} a^{9} + \frac{937910405877307525138906181085567983143560085}{47000272997344910868886118772870866142204473632} a^{8} - \frac{2524859549842980079693100482961756852944417771}{587503412466811385861076484660885826777555920400} a^{7} - \frac{32304550476394837483335866096227060732288791519}{587503412466811385861076484660885826777555920400} a^{6} - \frac{905172579491162899579011541682332907903871249}{14687585311670284646526912116522145669438898010} a^{5} + \frac{134795825152576471109891544840775366953798097}{8639756065688402733251124774424791570258175300} a^{4} - \frac{472491047793058113054209384869254556737055059}{14687585311670284646526912116522145669438898010} a^{3} + \frac{6660816741035138407718856275654567905137289069}{29375170623340569293053824233044291338877796020} a^{2} - \frac{607895693919236794787025405229265686207964751}{2937517062334056929305382423304429133887779602} a - \frac{556958113422324179277332244040687884225812790}{1468758531167028464652691211652214566943889801}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 631360478866000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1296000 |
| The 65 conjugacy class representatives for [A(5)^3]S(3)=A(5)wrS(3) are not computed |
| Character table for [A(5)^3]S(3)=A(5)wrS(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | $15$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.20.69 | $x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{6} + 2 x^{4} + 2$ | $12$ | $1$ | $20$ | 12T206 | $[4/3, 4/3, 4/3, 4/3, 2, 2]_{3}^{6}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $37$ | 37.5.0.1 | $x^{5} - x + 13$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 37.10.5.1 | $x^{10} - 2738 x^{6} + 1874161 x^{2} - 11719128733$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 491 | Data not computed | ||||||
| 1307 | Data not computed | ||||||
| 3119 | Data not computed | ||||||