Normalized defining polynomial
\( x^{15} + 36 x^{13} - 144 x^{12} - 32503 x^{11} + 261104 x^{10} - 2848725 x^{9} + 25958664 x^{8} - 124445806 x^{7} + 333271318 x^{6} - 536215885 x^{5} + 540397440 x^{4} - 344500525 x^{3} + 135184650 x^{2} - 29851500 x + 2843000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1556733003528499930254458732658332584781471296000000=2^{12}\cdot 5^{6}\cdot 7^{10}\cdot 13^{2}\cdot 71^{2}\cdot 337^{2}\cdot 2843^{4}\cdot 116719^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2587.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 13, 71, 337, 2843, 116719$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{6} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3}$, $\frac{1}{5} a^{7} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{25} a^{8} - \frac{1}{25} a^{6} - \frac{1}{25} a^{5} - \frac{1}{25} a^{4} + \frac{8}{25} a^{3} + \frac{4}{25} a^{2} - \frac{2}{5}$, $\frac{1}{25} a^{9} - \frac{1}{25} a^{7} - \frac{1}{25} a^{6} - \frac{1}{25} a^{5} + \frac{8}{25} a^{4} + \frac{4}{25} a^{3} - \frac{2}{5} a$, $\frac{1}{325} a^{10} - \frac{1}{325} a^{8} + \frac{4}{325} a^{7} - \frac{16}{325} a^{6} - \frac{32}{325} a^{5} + \frac{159}{325} a^{4} + \frac{9}{65} a^{3} + \frac{18}{65} a^{2} - \frac{3}{13} a + \frac{6}{13}$, $\frac{1}{1625} a^{11} - \frac{14}{1625} a^{9} - \frac{9}{1625} a^{8} + \frac{62}{1625} a^{7} - \frac{71}{1625} a^{6} - \frac{3}{65} a^{5} - \frac{371}{1625} a^{4} + \frac{324}{1625} a^{3} + \frac{718}{1625} a^{2} - \frac{74}{325} a - \frac{3}{25}$, $\frac{1}{8125} a^{12} - \frac{9}{8125} a^{10} + \frac{56}{8125} a^{9} - \frac{73}{8125} a^{8} + \frac{534}{8125} a^{7} - \frac{83}{1625} a^{6} + \frac{184}{8125} a^{5} - \frac{2456}{8125} a^{4} - \frac{3412}{8125} a^{3} - \frac{673}{1625} a^{2} + \frac{406}{1625} a + \frac{147}{325}$, $\frac{1}{32500000} a^{13} + \frac{31}{1625000} a^{12} - \frac{439}{2031250} a^{11} + \frac{1243}{1015625} a^{10} + \frac{543657}{32500000} a^{9} - \frac{46129}{8125000} a^{8} + \frac{276427}{6500000} a^{7} - \frac{796069}{8125000} a^{6} - \frac{32013}{16250000} a^{5} + \frac{7129079}{16250000} a^{4} - \frac{1987993}{6500000} a^{3} - \frac{410577}{1625000} a^{2} - \frac{418257}{1300000} a + \frac{312991}{650000}$, $\frac{1}{1040000000} a^{14} - \frac{1}{104000000} a^{13} + \frac{1297}{130000000} a^{12} - \frac{4847}{32500000} a^{11} - \frac{1287223}{1040000000} a^{10} + \frac{10219787}{520000000} a^{9} - \frac{295357}{208000000} a^{8} - \frac{44998663}{520000000} a^{7} - \frac{47385073}{520000000} a^{6} + \frac{17633269}{520000000} a^{5} - \frac{8741501}{208000000} a^{4} + \frac{19189041}{104000000} a^{3} - \frac{18150649}{41600000} a^{2} - \frac{3451627}{10400000} a + \frac{107167}{2080000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 263754998565000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2592000 |
| The 71 conjugacy class representatives for [1/2.S(5)^3]3 are not computed |
| Character table for [1/2.S(5)^3]3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | R | $15$ | R | $15$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.12.12.10 | $x^{12} - 6 x^{10} + 23 x^{8} - 28 x^{6} - 9 x^{4} - 30 x^{2} - 15$ | $2$ | $6$ | $12$ | 12T58 | $[2, 2, 2, 2]^{6}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.5.0.1 | $x^{5} - 2 x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 71 | Data not computed | ||||||
| 337 | Data not computed | ||||||
| 2843 | Data not computed | ||||||
| 116719 | Data not computed | ||||||