Normalized defining polynomial
\( x^{15} - 360 x^{13} - 648 x^{12} + 39784 x^{11} + 127584 x^{10} - 1599876 x^{9} - 6284088 x^{8} + 21382724 x^{7} + 72393848 x^{6} + 18576960 x^{5} - 80928000 x^{4} - 45803000 x^{3} + 21018800 x^{2} + 15736000 x + 2248000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14510776668759878086782120121838473216000000=2^{18}\cdot 5^{6}\cdot 7^{10}\cdot 281^{4}\cdot 44850007^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $754.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 281, 44850007$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{20} a^{11} + \frac{1}{10} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{10} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{40} a^{12} + \frac{1}{20} a^{9} + \frac{1}{10} a^{8} + \frac{1}{10} a^{7} + \frac{1}{10} a^{6} - \frac{1}{5} a^{5} + \frac{1}{10} a^{4} + \frac{1}{5} a^{3}$, $\frac{1}{5200} a^{13} + \frac{3}{520} a^{12} + \frac{1}{65} a^{11} - \frac{87}{1300} a^{10} + \frac{43}{650} a^{9} + \frac{71}{1300} a^{8} + \frac{51}{1300} a^{7} + \frac{49}{650} a^{6} - \frac{289}{1300} a^{5} + \frac{31}{650} a^{4} + \frac{12}{65} a^{3} - \frac{31}{65} a^{2} - \frac{1}{2} a + \frac{6}{13}$, $\frac{1}{151077215114651938673129497572711508395728800} a^{14} + \frac{65520851521332996591051345745766578107}{944232594466574616707059359829446927473305} a^{13} + \frac{73305136114984417877518753606625193365847}{7553860755732596933656474878635575419786440} a^{12} + \frac{45862736291323091821115888929226173562957}{9442325944665746167070593598294469274733050} a^{11} + \frac{1022053035288549213597831239954745205868053}{18884651889331492334141187196588938549466100} a^{10} - \frac{158041103702152547911559387837035236991671}{9442325944665746167070593598294469274733050} a^{9} - \frac{2208709840023244275531543772277363563862069}{37769303778662984668282374393177877098932200} a^{8} - \frac{3843039260857291740417837691309391784722821}{18884651889331492334141187196588938549466100} a^{7} + \frac{1660479058869487772748008626623394068411501}{37769303778662984668282374393177877098932200} a^{6} - \frac{1259295753256114797421116936288669660108779}{18884651889331492334141187196588938549466100} a^{5} + \frac{83457154409415489687421245398910222289443}{1888465188933149233414118719658893854946610} a^{4} - \frac{454479985633543367117319406617003716833341}{944232594466574616707059359829446927473305} a^{3} + \frac{1040546047487567379425668304102985933312257}{3776930377866298466828237439317787709893220} a^{2} + \frac{150414337426326161505016732488374653753219}{377693037786629846682823743931778770989322} a + \frac{71194050656080600173073937759146080156971}{188846518893314923341411871965889385494661}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8314234047450000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 648000 |
| The 55 conjugacy class representatives for [A(5)^3]3=A(5)wr3 are not computed |
| Character table for [A(5)^3]3=A(5)wr3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 sibling: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.12.18.44 | $x^{12} - 6 x^{11} + 8 x^{10} + 6 x^{8} + 4 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 8$ | $4$ | $3$ | $18$ | 12T166 | $[2, 2, 2, 2, 2, 2]^{9}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||
| 281 | Data not computed | ||||||
| 44850007 | Data not computed | ||||||