Properties

Label 15.11.1266415866...5072.1
Degree $15$
Signature $[11, 2]$
Discriminant $2^{10}\cdot 881^{6}\cdot 3769\cdot 70177$
Root discriminant $87.13$
Ramified primes $2, 881, 3769, 70177$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T90

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2304, -15040, -33168, -26128, 6600, 21392, 7911, -4324, -3744, -173, 624, 160, -39, -20, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 20*x^13 - 39*x^12 + 160*x^11 + 624*x^10 - 173*x^9 - 3744*x^8 - 4324*x^7 + 7911*x^6 + 21392*x^5 + 6600*x^4 - 26128*x^3 - 33168*x^2 - 15040*x - 2304)
 
gp: K = bnfinit(x^15 - 20*x^13 - 39*x^12 + 160*x^11 + 624*x^10 - 173*x^9 - 3744*x^8 - 4324*x^7 + 7911*x^6 + 21392*x^5 + 6600*x^4 - 26128*x^3 - 33168*x^2 - 15040*x - 2304, 1)
 

Normalized defining polynomial

\( x^{15} - 20 x^{13} - 39 x^{12} + 160 x^{11} + 624 x^{10} - 173 x^{9} - 3744 x^{8} - 4324 x^{7} + 7911 x^{6} + 21392 x^{5} + 6600 x^{4} - 26128 x^{3} - 33168 x^{2} - 15040 x - 2304 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[11, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(126641586691841137969338115072=2^{10}\cdot 881^{6}\cdot 3769\cdot 70177\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $87.13$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 881, 3769, 70177$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{3} + \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{12} a^{11} - \frac{1}{4} a^{8} + \frac{1}{4} a^{5} - \frac{1}{3} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{1776} a^{12} - \frac{1}{111} a^{10} - \frac{7}{1776} a^{9} + \frac{2}{37} a^{8} + \frac{7}{148} a^{7} + \frac{193}{592} a^{6} - \frac{7}{37} a^{5} + \frac{85}{222} a^{4} + \frac{77}{592} a^{3} - \frac{53}{111} a^{2} + \frac{217}{444} a - \frac{17}{37}$, $\frac{1}{3552} a^{13} - \frac{1}{222} a^{11} - \frac{7}{3552} a^{10} + \frac{1}{37} a^{9} + \frac{7}{296} a^{8} + \frac{193}{1184} a^{7} - \frac{7}{74} a^{6} + \frac{85}{444} a^{5} + \frac{77}{1184} a^{4} - \frac{53}{222} a^{3} + \frac{217}{888} a^{2} + \frac{10}{37} a$, $\frac{1}{7104} a^{14} - \frac{7}{7104} a^{11} - \frac{5}{222} a^{10} - \frac{7}{1776} a^{9} + \frac{113}{2368} a^{8} + \frac{21}{148} a^{7} + \frac{355}{888} a^{6} - \frac{531}{2368} a^{5} + \frac{61}{148} a^{4} - \frac{635}{1776} a^{3} + \frac{211}{444} a^{2} - \frac{5}{111} a + \frac{6}{37}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 44248875484.8 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T90:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 466560
The 72 conjugacy class representatives for [S(3)^5]A(5)=S(3)wrA(5) are not computed
Character table for [S(3)^5]A(5)=S(3)wrA(5) is not computed

Intermediate fields

5.5.3104644.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 30 siblings: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ $15$ ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ $15$ ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.4.4.2$x^{4} - x^{2} + 5$$2$$2$$4$$C_4$$[2]^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
881Data not computed
3769Data not computed
70177Data not computed