Normalized defining polynomial
\( x^{15} - 5 x^{14} + 25 x^{13} - 95 x^{12} + 285 x^{11} + 19844 x^{10} - 66945 x^{9} - 175530 x^{8} + 3169175 x^{7} - 5716705 x^{6} + 145166318 x^{5} - 219639400 x^{4} - 2382376375 x^{3} - 3290217500 x^{2} + 6382037500 x + 325852261250 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-923759194031620398058860778808593750000000000=-\,2^{10}\cdot 5^{27}\cdot 11^{12}\cdot 131^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $994.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{25} a^{9} + \frac{2}{25} a^{8} + \frac{2}{25} a^{7} + \frac{1}{25} a^{6} + \frac{11}{25} a^{5} - \frac{12}{25} a^{4} - \frac{8}{25} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{25} a^{10} - \frac{2}{25} a^{8} + \frac{2}{25} a^{7} - \frac{1}{25} a^{6} + \frac{1}{25} a^{5} + \frac{11}{25} a^{4} + \frac{1}{25} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{25} a^{11} + \frac{1}{25} a^{8} - \frac{2}{25} a^{7} - \frac{2}{25} a^{6} + \frac{8}{25} a^{5} - \frac{3}{25} a^{4} - \frac{6}{25} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{125} a^{12} + \frac{1}{125} a^{11} - \frac{2}{125} a^{10} - \frac{9}{125} a^{8} + \frac{2}{25} a^{7} + \frac{12}{125} a^{6} + \frac{27}{125} a^{5} + \frac{41}{125} a^{4} + \frac{11}{25} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{125} a^{13} + \frac{2}{125} a^{11} + \frac{2}{125} a^{10} + \frac{1}{125} a^{9} - \frac{6}{125} a^{8} + \frac{12}{125} a^{7} - \frac{2}{25} a^{6} + \frac{14}{125} a^{5} + \frac{29}{125} a^{4} - \frac{3}{25} a^{3}$, $\frac{1}{42431312162236939677704937517205877332649534401716989187625} a^{14} + \frac{45543409764369933234664737655097392564613507912836050074}{42431312162236939677704937517205877332649534401716989187625} a^{13} + \frac{104246719093861370832170765497943494545687876392880663864}{42431312162236939677704937517205877332649534401716989187625} a^{12} + \frac{412544625413501494264872461890691164626631050653356935952}{42431312162236939677704937517205877332649534401716989187625} a^{11} + \frac{31727472280540713057856910728073542170610784077277578346}{8486262432447387935540987503441175466529906880343397837525} a^{10} + \frac{42602852783653943799356629095218214511167339983816982533}{42431312162236939677704937517205877332649534401716989187625} a^{9} - \frac{82568464194538044645355987400080947389045903670090581641}{8486262432447387935540987503441175466529906880343397837525} a^{8} - \frac{988520172754298936864839850910934388032483336112293028942}{42431312162236939677704937517205877332649534401716989187625} a^{7} - \frac{2927732601085726932390646378054510831868414041104062545352}{42431312162236939677704937517205877332649534401716989187625} a^{6} - \frac{18051580731895105108456799461695012099327758225720762120746}{42431312162236939677704937517205877332649534401716989187625} a^{5} + \frac{20465828201433919922926744937659834884845279071146737052478}{42431312162236939677704937517205877332649534401716989187625} a^{4} - \frac{2459916151795751664147702295423844328262760269647338184746}{8486262432447387935540987503441175466529906880343397837525} a^{3} + \frac{109434948177394623630579708659579631887043357516032949474}{339450497297895517421639500137647018661196275213735913501} a^{2} + \frac{106692437026860566972914081060768917657909090420491753887}{339450497297895517421639500137647018661196275213735913501} a - \frac{147798436322214798824364599314818794437221448588085849722}{339450497297895517421639500137647018661196275213735913501}$
Class group and class number
$C_{5}\times C_{40}$, which has order $200$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 411098018557015.94 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.524.1, 5.1.28595703125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $5$ | 5.5.9.3 | $x^{5} + 80$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ |
| 5.5.9.3 | $x^{5} + 80$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.5.9.3 | $x^{5} + 80$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| $11$ | 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $131$ | $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |