Normalized defining polynomial
\( x^{15} - 5 x^{14} - 30 x^{13} + 60 x^{12} + 765 x^{11} + 561 x^{10} - 8220 x^{9} - 26970 x^{8} + 4440 x^{7} + 238660 x^{6} + 420532 x^{5} - 403920 x^{4} - 1831320 x^{3} - 3816360 x^{2} - 4945740 x - 2381172 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9128822781954600000000000000000=-\,2^{18}\cdot 3^{13}\cdot 5^{17}\cdot 31^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $115.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} + \frac{2}{5}$, $\frac{1}{5} a^{6} + \frac{2}{5} a$, $\frac{1}{5} a^{7} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{8} + \frac{2}{5} a^{3}$, $\frac{1}{25} a^{9} - \frac{2}{25} a^{8} - \frac{1}{25} a^{7} + \frac{2}{25} a^{6} + \frac{1}{25} a^{5} + \frac{2}{25} a^{4} - \frac{4}{25} a^{3} - \frac{2}{25} a^{2} + \frac{4}{25} a + \frac{2}{25}$, $\frac{1}{150} a^{10} - \frac{1}{150} a^{9} - \frac{4}{75} a^{8} - \frac{7}{75} a^{7} - \frac{7}{150} a^{6} + \frac{13}{150} a^{5} + \frac{8}{25} a^{4} - \frac{11}{25} a^{3} + \frac{12}{25} a^{2} + \frac{6}{25} a + \frac{12}{25}$, $\frac{1}{150} a^{11} - \frac{1}{50} a^{9} - \frac{2}{75} a^{8} + \frac{1}{50} a^{7} - \frac{2}{25} a^{6} + \frac{7}{150} a^{5} - \frac{1}{25} a^{4} + \frac{7}{25} a^{3} + \frac{1}{25} a^{2} + \frac{12}{25} a - \frac{6}{25}$, $\frac{1}{750} a^{12} - \frac{1}{750} a^{11} - \frac{1}{750} a^{10} - \frac{1}{50} a^{9} - \frac{3}{50} a^{8} - \frac{31}{750} a^{7} + \frac{41}{750} a^{6} + \frac{31}{750} a^{5} - \frac{1}{25} a^{4} - \frac{3}{25} a^{3} - \frac{11}{125} a^{2} + \frac{56}{125} a + \frac{11}{125}$, $\frac{1}{750} a^{13} - \frac{1}{375} a^{11} - \frac{1}{750} a^{10} - \frac{1}{50} a^{9} - \frac{8}{375} a^{8} + \frac{4}{75} a^{7} - \frac{21}{250} a^{6} - \frac{22}{375} a^{5} - \frac{1}{25} a^{4} - \frac{6}{125} a^{3} + \frac{11}{25} a^{2} + \frac{22}{125} a - \frac{14}{125}$, $\frac{1}{247959947885404481842096084500} a^{14} - \frac{10849863800276854223554829}{16530663192360298789473072300} a^{13} + \frac{23861261928332977559929957}{41326657980900746973682680750} a^{12} - \frac{3582790839769670793023663}{8265331596180149394736536150} a^{11} + \frac{68673738539834859632853157}{82653315961801493947365361500} a^{10} + \frac{356198499268823773150812891}{27551105320600497982455120500} a^{9} - \frac{789289152447648824972645359}{8265331596180149394736536150} a^{8} - \frac{858772660121720051536567081}{20663328990450373486841340375} a^{7} - \frac{258077283841307317378866947}{2755110532060049798245512050} a^{6} - \frac{1131644676267496318766713019}{61989986971351120460524021125} a^{5} - \frac{5570278072140306777199142887}{13775552660300248991227560250} a^{4} + \frac{100621517647598524665830583}{275511053206004979824551205} a^{3} + \frac{1294037110128233564630596683}{6887776330150124495613780125} a^{2} - \frac{1327095665329267591639731}{8887453329225967091114555} a + \frac{300220870575639643472220637}{666558999691947531833591625}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24782775558.00696 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.9300.1, 5.1.4050000.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.14.5 | $x^{10} - 2 x^{5} - 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.15.17.3 | $x^{15} - 5 x^{13} + 10 x^{12} + 10 x^{11} + 10 x^{9} - 5 x^{8} - 10 x^{6} + 10 x^{5} + 5 x^{3} + 10$ | $15$ | $1$ | $17$ | $F_5 \times S_3$ | $[5/4]_{12}^{2}$ |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |