Properties

Label 15.1.89840004522...0000.1
Degree $15$
Signature $[1, 7]$
Discriminant $-\,2^{23}\cdot 3^{13}\cdot 5^{9}\cdot 11^{13}\cdot 251^{5}$
Root discriminant $992.88$
Ramified primes $2, 3, 5, 11, 251$
Class number $425$ (GRH)
Class group $[5, 85]$ (GRH)
Galois group $F_5 \times S_3$ (as 15T11)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-41497747632, 0, 0, 0, 0, 265060026, 0, 0, 0, 0, -17028, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 17028*x^10 + 265060026*x^5 - 41497747632)
 
gp: K = bnfinit(x^15 - 17028*x^10 + 265060026*x^5 - 41497747632, 1)
 

Normalized defining polynomial

\( x^{15} - 17028 x^{10} + 265060026 x^{5} - 41497747632 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-898400045220655932623997317447073792000000000=-\,2^{23}\cdot 3^{13}\cdot 5^{9}\cdot 11^{13}\cdot 251^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $992.88$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 11, 251$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{3} a^{4}$, $\frac{1}{9} a^{5}$, $\frac{1}{9} a^{6}$, $\frac{1}{27} a^{7} + \frac{1}{3} a^{2}$, $\frac{1}{81} a^{8} + \frac{1}{9} a^{3}$, $\frac{1}{243} a^{9} - \frac{2}{27} a^{4}$, $\frac{1}{3100963338} a^{10} - \frac{565916}{15661431} a^{5} - \frac{40374}{193351}$, $\frac{1}{9302890014} a^{11} - \frac{2306075}{46984293} a^{6} - \frac{13458}{193351} a$, $\frac{1}{3069953704620} a^{12} - \frac{1}{23257225035} a^{11} + \frac{1}{15504816690} a^{10} + \frac{1}{1215} a^{9} - \frac{2}{405} a^{8} + \frac{79764356}{7752408345} a^{7} - \frac{11049281}{234921465} a^{6} - \frac{4046234}{78307155} a^{5} + \frac{16}{135} a^{4} + \frac{1}{45} a^{3} + \frac{2046829}{12761166} a^{2} + \frac{220267}{966755} a - \frac{427076}{966755}$, $\frac{1}{9209861113860} a^{13} - \frac{1}{23257225035} a^{11} + \frac{1}{15504816690} a^{10} + \frac{2}{1215} a^{9} - \frac{18502277}{4651445007} a^{8} - \frac{1}{135} a^{7} + \frac{9832627}{234921465} a^{6} - \frac{461215}{15661431} a^{5} + \frac{1}{27} a^{4} - \frac{15288187}{191417490} a^{3} + \frac{2}{15} a^{2} + \frac{26916}{966755} a - \frac{40374}{966755}$, $\frac{1}{607850833514760} a^{14} - \frac{1}{46514450070} a^{11} - \frac{1}{15504816690} a^{10} - \frac{2159820277}{1534976852310} a^{9} - \frac{2}{405} a^{8} - \frac{1}{135} a^{7} - \frac{2914402}{234921465} a^{6} - \frac{1174243}{78307155} a^{5} + \frac{980082761}{12633554340} a^{4} - \frac{2}{45} a^{3} - \frac{7}{15} a^{2} + \frac{80032}{193351} a - \frac{152977}{966755}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{5}\times C_{85}$, which has order $425$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 606628696626962.5 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3\times F_5$ (as 15T11):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 120
The 15 conjugacy class representatives for $F_5 \times S_3$
Character table for $F_5 \times S_3$

Intermediate fields

3.1.66264.1, 5.1.2371842000.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 30 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ R ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ $15$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ $15$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.5.4.1$x^{5} - 2$$5$$1$$4$$F_5$$[\ ]_{5}^{4}$
2.10.19.17$x^{10} - 2 x^{4} + 4 x^{2} - 10$$10$$1$$19$$F_{5}\times C_2$$[3]_{5}^{4}$
$3$3.5.4.1$x^{5} - 3$$5$$1$$4$$F_5$$[\ ]_{5}^{4}$
3.10.9.1$x^{10} - 3$$10$$1$$9$$F_{5}\times C_2$$[\ ]_{10}^{4}$
$5$5.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
5.12.9.2$x^{12} - 10 x^{8} + 25 x^{4} - 500$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
$11$11.5.4.3$x^{5} + 33$$5$$1$$4$$C_5$$[\ ]_{5}$
11.10.9.5$x^{10} - 8019$$10$$1$$9$$C_{10}$$[\ ]_{10}$
251Data not computed