Normalized defining polynomial
\( x^{15} - x^{14} + 18 x^{13} - 135 x^{12} + 257 x^{11} - 1439 x^{10} + 7210 x^{9} - 13223 x^{8} + 36398 x^{7} - 133204 x^{6} + 158780 x^{5} + 9134 x^{4} - 10819 x^{3} - 30041 x^{2} - 78572 x - 26757 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-883088916844315174708071890944=-\,2^{24}\cdot 31^{5}\cdot 3691^{2}\cdot 11617^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 3691, 11617$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{5} + \frac{1}{4} a^{4} + \frac{3}{8} a^{2} + \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{8} a^{11} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{8} a^{2} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{8} a^{12} + \frac{1}{8} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} + \frac{1}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{8} a^{4} + \frac{3}{8} a^{3} + \frac{1}{8} a^{2} - \frac{1}{8} a - \frac{3}{8}$, $\frac{1}{1888284870356225904031001940136} a^{14} + \frac{25929588062474163360073491083}{472071217589056476007750485034} a^{13} - \frac{6371353495848523970043048507}{472071217589056476007750485034} a^{12} + \frac{74390707882289151530547007647}{1888284870356225904031001940136} a^{11} - \frac{38693177653731191314227852765}{1888284870356225904031001940136} a^{10} - \frac{4005589455063277720115245703}{236035608794528238003875242517} a^{9} - \frac{198944319731711683632167604769}{1888284870356225904031001940136} a^{8} + \frac{57267806237434358475723068694}{236035608794528238003875242517} a^{7} + \frac{456535191832274532794523889809}{1888284870356225904031001940136} a^{6} + \frac{113836010439410725727756659900}{236035608794528238003875242517} a^{5} + \frac{51905678359121151808505224309}{472071217589056476007750485034} a^{4} + \frac{532505667065209424225196143307}{1888284870356225904031001940136} a^{3} - \frac{79173166816102818439335430628}{236035608794528238003875242517} a^{2} - \frac{723740891191832250398996948791}{1888284870356225904031001940136} a + \frac{95456135937838312177103024630}{236035608794528238003875242517}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1125442805.24 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 24000 |
| The 40 conjugacy class representatives for [1/2.F(5)^3]S(3) |
| Character table for [1/2.F(5)^3]S(3) is not computed |
Intermediate fields
| 3.1.31.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.12.24.231 | $x^{12} + 24 x^{11} - 26 x^{10} - 20 x^{9} + 6 x^{8} + 24 x^{7} + 16 x^{6} - 16 x^{5} - 4 x^{4} - 16 x^{3} - 8 x^{2} + 16 x - 24$ | $4$ | $3$ | $24$ | 12T55 | $[2, 2, 3, 3, 3]^{3}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.8.4.1 | $x^{8} + 32674 x^{4} - 119164 x^{2} + 266897569$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3691 | Data not computed | ||||||
| 11617 | Data not computed | ||||||