Properties

Label 15.1.845...879.1
Degree $15$
Signature $[1, 7]$
Discriminant $-8.450\times 10^{24}$
Root discriminant \(45.90\)
Ramified primes $3,1213$
Class number $7$ (GRH)
Class group [7] (GRH)
Galois group $D_{15}$ (as 15T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 6*x^14 + 29*x^13 - 119*x^12 + 396*x^11 - 1132*x^10 + 2906*x^9 - 6522*x^8 + 13105*x^7 - 24007*x^6 + 38721*x^5 - 52199*x^4 + 52599*x^3 - 37137*x^2 + 14859*x - 2421)
 
gp: K = bnfinit(y^15 - 6*y^14 + 29*y^13 - 119*y^12 + 396*y^11 - 1132*y^10 + 2906*y^9 - 6522*y^8 + 13105*y^7 - 24007*y^6 + 38721*y^5 - 52199*y^4 + 52599*y^3 - 37137*y^2 + 14859*y - 2421, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^15 - 6*x^14 + 29*x^13 - 119*x^12 + 396*x^11 - 1132*x^10 + 2906*x^9 - 6522*x^8 + 13105*x^7 - 24007*x^6 + 38721*x^5 - 52199*x^4 + 52599*x^3 - 37137*x^2 + 14859*x - 2421);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - 6*x^14 + 29*x^13 - 119*x^12 + 396*x^11 - 1132*x^10 + 2906*x^9 - 6522*x^8 + 13105*x^7 - 24007*x^6 + 38721*x^5 - 52199*x^4 + 52599*x^3 - 37137*x^2 + 14859*x - 2421)
 

\( x^{15} - 6 x^{14} + 29 x^{13} - 119 x^{12} + 396 x^{11} - 1132 x^{10} + 2906 x^{9} - 6522 x^{8} + \cdots - 2421 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $15$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 7]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-8450344007000266933623879\) \(\medspace = -\,3^{7}\cdot 1213^{7}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(45.90\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}1213^{1/2}\approx 60.32412452742269$
Ramified primes:   \(3\), \(1213\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3639}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{7}+\frac{1}{3}a^{5}+\frac{1}{3}a^{3}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{2}$, $\frac{1}{9}a^{9}-\frac{1}{3}a^{5}-\frac{4}{9}a^{3}-\frac{1}{3}a$, $\frac{1}{9}a^{10}-\frac{1}{9}a^{4}$, $\frac{1}{9}a^{11}-\frac{1}{9}a^{5}$, $\frac{1}{9}a^{12}-\frac{1}{9}a^{6}$, $\frac{1}{81}a^{13}+\frac{4}{81}a^{12}-\frac{4}{81}a^{11}-\frac{1}{81}a^{10}+\frac{1}{27}a^{9}-\frac{1}{27}a^{8}+\frac{2}{81}a^{7}+\frac{8}{81}a^{6}+\frac{25}{81}a^{5}-\frac{32}{81}a^{4}-\frac{4}{9}a^{3}-\frac{1}{27}a^{2}-\frac{1}{9}a+\frac{1}{9}$, $\frac{1}{30\!\cdots\!31}a^{14}+\frac{552779285442629}{30\!\cdots\!31}a^{13}+\frac{549848504754818}{33\!\cdots\!59}a^{12}-\frac{27017080172585}{942869095121349}a^{11}-\frac{884867963771006}{27\!\cdots\!21}a^{10}+\frac{398355002683082}{33\!\cdots\!59}a^{9}-\frac{16\!\cdots\!07}{27\!\cdots\!21}a^{8}+\frac{12\!\cdots\!34}{30\!\cdots\!31}a^{7}+\frac{42\!\cdots\!04}{10\!\cdots\!77}a^{6}-\frac{16\!\cdots\!96}{30\!\cdots\!31}a^{5}-\frac{66\!\cdots\!16}{30\!\cdots\!31}a^{4}+\frac{10\!\cdots\!91}{10\!\cdots\!77}a^{3}+\frac{49\!\cdots\!60}{10\!\cdots\!77}a^{2}-\frac{27\!\cdots\!34}{11\!\cdots\!53}a-\frac{93\!\cdots\!76}{33\!\cdots\!59}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

$C_{7}$, which has order $7$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{110098422693676}{30\!\cdots\!31}a^{14}-\frac{871031322155096}{30\!\cdots\!31}a^{13}+\frac{36\!\cdots\!48}{30\!\cdots\!31}a^{12}-\frac{48421391659897}{942869095121349}a^{11}+\frac{15\!\cdots\!11}{91\!\cdots\!07}a^{10}-\frac{46\!\cdots\!79}{10\!\cdots\!77}a^{9}+\frac{31\!\cdots\!98}{27\!\cdots\!21}a^{8}-\frac{78\!\cdots\!98}{30\!\cdots\!31}a^{7}+\frac{14\!\cdots\!75}{30\!\cdots\!31}a^{6}-\frac{26\!\cdots\!14}{30\!\cdots\!31}a^{5}+\frac{14\!\cdots\!53}{10\!\cdots\!77}a^{4}-\frac{16\!\cdots\!67}{10\!\cdots\!77}a^{3}+\frac{14\!\cdots\!51}{11\!\cdots\!53}a^{2}-\frac{15\!\cdots\!12}{33\!\cdots\!59}a+\frac{67\!\cdots\!20}{11\!\cdots\!53}$, $\frac{56\!\cdots\!55}{30\!\cdots\!31}a^{14}-\frac{10\!\cdots\!44}{10\!\cdots\!77}a^{13}+\frac{14\!\cdots\!85}{30\!\cdots\!31}a^{12}-\frac{619440588067219}{314289698373783}a^{11}+\frac{17\!\cdots\!62}{27\!\cdots\!21}a^{10}-\frac{17\!\cdots\!24}{10\!\cdots\!77}a^{9}+\frac{12\!\cdots\!16}{27\!\cdots\!21}a^{8}-\frac{98\!\cdots\!80}{10\!\cdots\!77}a^{7}+\frac{58\!\cdots\!38}{30\!\cdots\!31}a^{6}-\frac{34\!\cdots\!44}{10\!\cdots\!77}a^{5}+\frac{16\!\cdots\!90}{30\!\cdots\!31}a^{4}-\frac{68\!\cdots\!75}{10\!\cdots\!77}a^{3}+\frac{61\!\cdots\!21}{10\!\cdots\!77}a^{2}-\frac{12\!\cdots\!26}{33\!\cdots\!59}a+\frac{26\!\cdots\!58}{33\!\cdots\!59}$, $\frac{643609340621560}{30\!\cdots\!31}a^{14}-\frac{10\!\cdots\!63}{10\!\cdots\!77}a^{13}+\frac{14\!\cdots\!09}{30\!\cdots\!31}a^{12}-\frac{61075729864892}{314289698373783}a^{11}+\frac{16\!\cdots\!70}{27\!\cdots\!21}a^{10}-\frac{16\!\cdots\!17}{10\!\cdots\!77}a^{9}+\frac{11\!\cdots\!15}{27\!\cdots\!21}a^{8}-\frac{86\!\cdots\!03}{10\!\cdots\!77}a^{7}+\frac{49\!\cdots\!20}{30\!\cdots\!31}a^{6}-\frac{29\!\cdots\!15}{10\!\cdots\!77}a^{5}+\frac{13\!\cdots\!46}{30\!\cdots\!31}a^{4}-\frac{51\!\cdots\!47}{10\!\cdots\!77}a^{3}+\frac{37\!\cdots\!88}{10\!\cdots\!77}a^{2}-\frac{51\!\cdots\!27}{33\!\cdots\!59}a-\frac{12\!\cdots\!58}{33\!\cdots\!59}$, $\frac{10\!\cdots\!82}{10\!\cdots\!77}a^{14}-\frac{18\!\cdots\!85}{33\!\cdots\!59}a^{13}+\frac{26\!\cdots\!84}{10\!\cdots\!77}a^{12}-\frac{11\!\cdots\!24}{104763232791261}a^{11}+\frac{31\!\cdots\!97}{91\!\cdots\!07}a^{10}-\frac{32\!\cdots\!92}{33\!\cdots\!59}a^{9}+\frac{22\!\cdots\!16}{91\!\cdots\!07}a^{8}-\frac{17\!\cdots\!10}{33\!\cdots\!59}a^{7}+\frac{10\!\cdots\!62}{10\!\cdots\!77}a^{6}-\frac{63\!\cdots\!02}{33\!\cdots\!59}a^{5}+\frac{29\!\cdots\!41}{10\!\cdots\!77}a^{4}-\frac{12\!\cdots\!31}{33\!\cdots\!59}a^{3}+\frac{11\!\cdots\!81}{33\!\cdots\!59}a^{2}-\frac{22\!\cdots\!06}{11\!\cdots\!53}a+\frac{52\!\cdots\!43}{11\!\cdots\!53}$, $\frac{133902148977308}{30\!\cdots\!31}a^{14}-\frac{214882211894551}{10\!\cdots\!77}a^{13}+\frac{30\!\cdots\!75}{30\!\cdots\!31}a^{12}-\frac{12789276307789}{314289698373783}a^{11}+\frac{34\!\cdots\!90}{27\!\cdots\!21}a^{10}-\frac{34\!\cdots\!23}{10\!\cdots\!77}a^{9}+\frac{23\!\cdots\!28}{27\!\cdots\!21}a^{8}-\frac{17\!\cdots\!36}{10\!\cdots\!77}a^{7}+\frac{10\!\cdots\!99}{30\!\cdots\!31}a^{6}-\frac{60\!\cdots\!95}{10\!\cdots\!77}a^{5}+\frac{26\!\cdots\!18}{30\!\cdots\!31}a^{4}-\frac{10\!\cdots\!08}{10\!\cdots\!77}a^{3}+\frac{82\!\cdots\!90}{10\!\cdots\!77}a^{2}-\frac{16\!\cdots\!76}{33\!\cdots\!59}a+\frac{45\!\cdots\!31}{33\!\cdots\!59}$, $\frac{18\!\cdots\!38}{30\!\cdots\!31}a^{14}-\frac{501888842885077}{33\!\cdots\!59}a^{13}+\frac{20\!\cdots\!33}{30\!\cdots\!31}a^{12}-\frac{72102218808298}{314289698373783}a^{11}+\frac{11\!\cdots\!49}{27\!\cdots\!21}a^{10}-\frac{77\!\cdots\!22}{10\!\cdots\!77}a^{9}+\frac{33\!\cdots\!13}{27\!\cdots\!21}a^{8}+\frac{30\!\cdots\!52}{33\!\cdots\!59}a^{7}-\frac{16\!\cdots\!70}{30\!\cdots\!31}a^{6}+\frac{14\!\cdots\!67}{10\!\cdots\!77}a^{5}-\frac{13\!\cdots\!08}{30\!\cdots\!31}a^{4}+\frac{95\!\cdots\!30}{10\!\cdots\!77}a^{3}-\frac{14\!\cdots\!12}{10\!\cdots\!77}a^{2}+\frac{31\!\cdots\!19}{33\!\cdots\!59}a-\frac{66\!\cdots\!62}{33\!\cdots\!59}$, $\frac{16\!\cdots\!97}{30\!\cdots\!31}a^{14}-\frac{80\!\cdots\!66}{30\!\cdots\!31}a^{13}+\frac{42\!\cdots\!39}{33\!\cdots\!59}a^{12}-\frac{470658427720621}{942869095121349}a^{11}+\frac{42\!\cdots\!03}{27\!\cdots\!21}a^{10}-\frac{14\!\cdots\!93}{33\!\cdots\!59}a^{9}+\frac{28\!\cdots\!01}{27\!\cdots\!21}a^{8}-\frac{67\!\cdots\!92}{30\!\cdots\!31}a^{7}+\frac{43\!\cdots\!20}{10\!\cdots\!77}a^{6}-\frac{22\!\cdots\!04}{30\!\cdots\!31}a^{5}+\frac{33\!\cdots\!54}{30\!\cdots\!31}a^{4}-\frac{13\!\cdots\!07}{10\!\cdots\!77}a^{3}+\frac{97\!\cdots\!95}{10\!\cdots\!77}a^{2}-\frac{44\!\cdots\!12}{11\!\cdots\!53}a-\frac{29\!\cdots\!35}{33\!\cdots\!59}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 4974627.527237572 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{7}\cdot 4974627.527237572 \cdot 7}{2\cdot\sqrt{8450344007000266933623879}}\cr\approx \mathstrut & 4.63106090571296 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^15 - 6*x^14 + 29*x^13 - 119*x^12 + 396*x^11 - 1132*x^10 + 2906*x^9 - 6522*x^8 + 13105*x^7 - 24007*x^6 + 38721*x^5 - 52199*x^4 + 52599*x^3 - 37137*x^2 + 14859*x - 2421)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^15 - 6*x^14 + 29*x^13 - 119*x^12 + 396*x^11 - 1132*x^10 + 2906*x^9 - 6522*x^8 + 13105*x^7 - 24007*x^6 + 38721*x^5 - 52199*x^4 + 52599*x^3 - 37137*x^2 + 14859*x - 2421, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^15 - 6*x^14 + 29*x^13 - 119*x^12 + 396*x^11 - 1132*x^10 + 2906*x^9 - 6522*x^8 + 13105*x^7 - 24007*x^6 + 38721*x^5 - 52199*x^4 + 52599*x^3 - 37137*x^2 + 14859*x - 2421);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - 6*x^14 + 29*x^13 - 119*x^12 + 396*x^11 - 1132*x^10 + 2906*x^9 - 6522*x^8 + 13105*x^7 - 24007*x^6 + 38721*x^5 - 52199*x^4 + 52599*x^3 - 37137*x^2 + 14859*x - 2421);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{15}$ (as 15T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 30
The 9 conjugacy class representatives for $D_{15}$
Character table for $D_{15}$

Intermediate fields

3.1.3639.1, 5.1.13242321.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 30
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.5.0.1}{5} }^{3}$ R $15$ $15$ ${\href{/padicField/11.2.0.1}{2} }^{7}{,}\,{\href{/padicField/11.1.0.1}{1} }$ $15$ $15$ ${\href{/padicField/19.5.0.1}{5} }^{3}$ $15$ ${\href{/padicField/29.2.0.1}{2} }^{7}{,}\,{\href{/padicField/29.1.0.1}{1} }$ $15$ ${\href{/padicField/37.2.0.1}{2} }^{7}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.3.0.1}{3} }^{5}$ ${\href{/padicField/43.3.0.1}{3} }^{5}$ $15$ ${\href{/padicField/53.2.0.1}{2} }^{7}{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.5.0.1}{5} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
\(1213\) Copy content Toggle raw display $\Q_{1213}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.3639.2t1.a.a$1$ $ 3 \cdot 1213 $ \(\Q(\sqrt{-3639}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.3639.3t2.a.a$2$ $ 3 \cdot 1213 $ 3.1.3639.1 $S_3$ (as 3T2) $1$ $0$
* 2.3639.5t2.a.b$2$ $ 3 \cdot 1213 $ 5.1.13242321.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.3639.5t2.a.a$2$ $ 3 \cdot 1213 $ 5.1.13242321.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.3639.15t2.a.a$2$ $ 3 \cdot 1213 $ 15.1.8450344007000266933623879.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3639.15t2.a.b$2$ $ 3 \cdot 1213 $ 15.1.8450344007000266933623879.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3639.15t2.a.c$2$ $ 3 \cdot 1213 $ 15.1.8450344007000266933623879.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3639.15t2.a.d$2$ $ 3 \cdot 1213 $ 15.1.8450344007000266933623879.1 $D_{15}$ (as 15T2) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.